Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 9324
1.  
i

Hай­ди­те 15% от числа 78.

1) 11,7
2) 1170
3) 19,5
4) 117
2.  
i

Най­ди­те z, если \mathfrak Im z=3, z=x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка плюс 4 плюс левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус 9 пра­вая круг­лая скоб­ка i.

1) z=6 плюс 3i
2) z= минус 16 плюс 3i
3) z=16 плюс 3i
4) z=16 минус 3i
3.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 49 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка умно­жить на 625 в сте­пе­ни левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 5 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в кубе конец дроби .

1) 25
2) 245
3) 49
4) 135
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −2
5.  
i

Зна­че­ние част­но­го

 дробь: чис­ли­тель: a в квад­ра­те плюс a минус 6, зна­ме­на­тель: 2 a в квад­ра­те плюс 5 a минус 3 конец дроби : дробь: чис­ли­тель: 3 a в квад­ра­те минус 5 a минус 2, зна­ме­на­тель: 2 a в квад­ра­те плюс a минус 1 конец дроби

равно

1)  дробь: чис­ли­тель: a плюс 1, зна­ме­на­тель: 3a плюс 1 конец дроби
2)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a минус 1 конец дроби
3)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a плюс 1 конец дроби
4)  дробь: чис­ли­тель: a минус 1, зна­ме­на­тель: 3a плюс 1 конец дроби
6.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния: 4 умно­жить на \abs2x плюс 7 минус 5=31.

1) 4
2) 8
3) −8
4) 1
7.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний xy= минус 12,x левая круг­лая скоб­ка 2y минус 1 пра­вая круг­лая скоб­ка = минус 18. конец си­сте­мы .

Если (x0; y0) — ре­ше­ние си­сте­мы, то x0 = 
1) −6
2) −16
3) 2
4) 6
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to бес­ко­неч­ность \mathop\lim дробь: чис­ли­тель: минус 2x в квад­ра­те плюс 6x минус 1, зна­ме­на­тель: x в квад­ра­те минус 2x конец дроби .

1) 1
2) −1
3) −2
4) 0
9.  
i

Окруж­ность ра­ди­у­са 4 впи­са­на в пря­мо­уголь­ную тра­пе­цию с тупым углом 150°. Пло­щадь тра­пе­ции равна

1) 64
2) 35
3) 96
4) 56
10.  
i

Пусть ABCD — квад­рат, BM \perp левая круг­лая скоб­ка ABC пра­вая круг­лая скоб­ка . Най­ди­те длину от­рез­ка DM, если AB = 2 ко­рень из 3  см, а BM = 5 см.

1) 6 ко­рень из 2 см
2) 5 ко­рень из 3 см
3) 7 см
4) 6 см
11.  
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).

1) 135°
2) 255°
3) 175°
4) 190°
12.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 1 боль­ше или равно 0, дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 2 мень­ше или равно 0. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 1; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
13.  
i

Bычис­ли­те ин­те­грал:  при­над­ле­жит t_ минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те d x.

1) 18
2) −10
3) 23
4) 15
14.  
i

Че­ты­ре иг­ро­ка делят по­ров­ну 28 ко­стей до­ми­но. Сколь­ки­ми спо­со­ба­ми они могут это сде­лать?

1)  дробь: чис­ли­тель: 28!, зна­ме­на­тель: левая круг­лая скоб­ка 7! пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец дроби
2)  дробь: чис­ли­тель: 28!, зна­ме­на­тель: левая круг­лая скоб­ка 7! пра­вая круг­лая скоб­ка в сте­пе­ни 5 конец дроби
3)  дробь: чис­ли­тель: 27!, зна­ме­на­тель: левая круг­лая скоб­ка 7! пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец дроби
4)  дробь: чис­ли­тель: 28!, зна­ме­на­тель: левая круг­лая скоб­ка 8! пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец дроби
15.  
i

В окруж­но­сти с цен­тром в точке O по­стро­е­ны па­рал­лель­ные хорды AB и ED. Угол ECD равен 60°, AC = 12. Длина хорды ED равна

1) 3 ко­рень из 3
2) 6 ко­рень из 6
3) 3 ко­рень из 6
4) 4 ко­рень из 3
16.  
i

Опре­де­ли­те вза­им­ное рас­по­ло­же­ние пря­мых d1 и d2, если они за­да­ны урав­не­ни­я­ми

 дробь: чис­ли­тель: x минус 2, зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: y плюс 1, зна­ме­на­тель: минус 3 конец дроби = дробь: чис­ли­тель: z , зна­ме­на­тель: минус 1 конец дроби и  дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: y , зна­ме­на­тель: минус 6 конец дроби = дробь: чис­ли­тель: z минус 1, зна­ме­на­тель: минус 2 конец дроби

со­от­вет­ствен­но.

1) не лежат в одной плос­ко­сти
2) па­рал­лель­ны
3) пе­ре­се­ка­ют­ся
4) пер­пен­ди­ку­ляр­ны

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...

1) 25
2) 49
3) 14
4) 36
18.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус y пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби , ло­га­рифм по ос­но­ва­нию 5 10x минус ло­га­рифм по ос­но­ва­нию 5 y=1. конец си­сте­мы .

1) (2; 4)
2) (8; 2)
3) (5; 4)
4) (4; 1)
19.  
i

Cко­рость дви­же­ния ма­те­ри­аль­ной точки ме­ня­ет­ся по за­ко­ну  v левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = синус t ко­си­нус t. Най­ди­те закон дви­же­ния ма­те­ри­аль­ной точки, если при t = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби , прой­ден­ный путь равен 3.

1) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,5 ко­си­нус t плюс 3
2) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = минус 0,25 ко­си­нус 2 t плюс 3
3) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = минус 0,25 синус 2 t плюс 1
4) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,25 ко­си­нус 2 t плюс 1
5) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,5 ко­си­нус 2 t плюс 5
6) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,2 ко­си­нус t плюс 5
20.  
i

Усе­чен­ный конус, у ко­то­ро­го ра­ди­у­сы ос­но­ва­ний равны 7 и 8, и пол­ный конус такой же вы­со­ты рав­но­ве­ли­ки. Най­ди­те ра­ди­ус ос­но­ва­ния пол­но­го ко­ну­са.

1) 13
2) 10
3) 12
4) 15
21.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Най­ди­те сумму век­то­ров \overrightarrowAA_1 и \overrightarrowE_1D_1.

1)  \overrightarrowD_1C
2)  \overrightarrowAB_1
3)  \overrightarrowBC
4)  \overrightarrowAF_1
22.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те длину по­лу­чен­но­го век­то­ра.

1)  ко­рень из 5
2)  ко­рень из 2
3)  ко­рень из 3
4)  ко­рень из 6
23.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те век­тор, рав­ный сумме век­то­ров  \overrightarrowAB_1 плюс \overrightarrowB_1E_1 плюс \overrightarrowF_1F.

1)  \overrightarrowAB_1
2)  \overrightarrowAF_1
3)  \overrightarrowBB_1
4)  \overrightarrowAE
24.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.

1) 30°
2) 90°
3) 60°
4) 45°
25.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те угол между век­то­ра­ми  \overrightarrowEB и  \overrightarrowEA.

1) 60°
2) 180°
3) 90°
4) 30°
26.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:

1) 2 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2
4) 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 12 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 3 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
27.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка 2 ко­си­нус x боль­ше 1\ пра­вая квад­рат­ная скоб­ка .

1) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая квад­рат­ная скоб­ка
2) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка
3) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая квад­рат­ная скоб­ка
4) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка
5) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка
6) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка
28.  
i

Сумма двух по­сле­до­ва­тель­ных на­ту­раль­ных чисел, за­дан­ных вида 3n, равна 21, а их про­из­ве­де­ние 108. Ука­жи­те дан­ные числа.

1) 10
2) 7
3) 9
4) 9
5) 12
6) 8
29.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов, ука­жи­те вер­ное для функ­ций f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1 и g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = \srqrt x.

1) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся ли­ней­ной функ­ци­ей функ­ци­ей
2) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =2 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 1
3) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 x конец ар­гу­мен­та плюс 1
4) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся убы­ва­ю­щей функ­ци­ей
5) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся ли­ней­ной функ­ци­ей
6) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся воз­рас­та­ю­щей функ­ци­ей
30.  
i

Най­ди­те |\veca плюс \vecb|:

1) 7
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
5) 3
6) 4
31.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка 2 минус i пра­вая круг­лая скоб­ка в кубе плюс левая круг­лая скоб­ка 2 плюс i пра­вая круг­лая скоб­ка в кубе .

1) 4 плюс 3i
2)  минус 4 умно­жить на i в квад­ра­те
3)  минус 2 плюс 5i
4) 12 минус 11i
5) 4
6) 4i
32.  
i

Ре­ши­те урав­не­ние:  синус в квад­ра­те x минус 3 синус x плюс 2=0, при x при­над­ле­жит левая квад­рат­ная скоб­ка 0 гра­ду­сов; 360 гра­ду­сов пра­вая квад­рат­ная скоб­ка .

1) 90°
2) 90°
3)  Пи
4) 270°
5) 2 Пи
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
33.  
i

В тре­уголь­ни­ке АВС из­вест­но, что AB = 7,5 см, BC = 10 см и AC = 5 см. Най­ди­те все вер­ные утвер­жде­ния.

1) Угол С мень­ше угла В.
2) Сумма любых двух сто­рон тре­уголь­ни­ка мень­ше 11 см.
3) Сумма сто­рон AC и ВС в 2 раза боль­ше сто­ро­ны AB.
4) Угол С — самый боль­шой угол тре­уголь­ни­ка ABC.
5) Пе­ри­метр тре­уголь­ни­ка АВС мень­ше 20 cм.
6) Угол А боль­ше угла В.
34.  
i

Учи­тель дал за­да­ние: из пред­ло­жен­ных по­сле­до­ва­тель­но­стей

а)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ;\ldots

б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби ;\ldots

в) 10 ; 8 ; 6 ; 2 ; \ldots

вы­брать бес­ко­неч­но убы­ва­ю­щую гео­мет­ри­че­скую про­грес­сию и найти сумму всех его чле­нов. Если уче­ник вы­пол­нил за­да­ние верно, то в от­ве­те он по­лу­чил.
1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
3) 3
4) 1
35.  
i

Точка A — центр шара. По дан­ным ри­сун­ка най­ди­те пло­щадь сфе­ри­че­ской части мень­ше­го ша­ро­во­го сег­мен­та.

1) 306 Пи
2)  дробь: чис­ли­тель: 200, зна­ме­на­тель: 3 конец дроби Пи
3)  дробь: чис­ли­тель: 500, зна­ме­на­тель: 3 конец дроби Пи
4) 208 Пи
5)  дробь: чис­ли­тель: 100, зна­ме­на­тель: 3 конец дроби Пи
6) 108 Пи