Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 6257
1.  
i

Ука­жи­те номер пары вза­им­но про­стых чисел.

1) 6 и 33
2) 22 и 33
3) 14 и 33
4) 14 и 22
2.  
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме: 2 левая круг­лая скоб­ка минус 2 плюс 3i пра­вая круг­лая скоб­ка минус 5 левая круг­лая скоб­ка 7 минус 2i пра­вая круг­лая скоб­ка минус 4 левая круг­лая скоб­ка i минус 7 пра­вая круг­лая скоб­ка .

1) z= минус 11 плюс 12i
2) z= минус 2 плюс 10i
3) z= минус 8 плюс 12i
4) z=12i
3.  
i

Вы­чис­ли­те:  левая круг­лая скоб­ка 29 умно­жить на 46 плюс 464 пра­вая круг­лая скоб­ка :899 плюс 675.

1) 678
2) 677
3) 676
4) 682
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­тан­генс ко­рень из 3 минус Пи .

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  Пи
3)  минус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
5.  
i

Дан­ное вы­ра­же­ние  минус левая круг­лая скоб­ка 3,5x минус y пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка минус 2y плюс 0,5x пра­вая круг­лая скоб­ка имеет стан­дарт­ный вид

1) 2x минус 5y
2)  минус 2x минус 5y
3) 2x плюс 5y
4)  минус 2x минус 7y
6.  
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 16 пра­вая квад­рат­ная скоб­ка
7.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to 0\mathop\lim дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 1 плюс x конец ар­гу­мен­та , зна­ме­на­тель: x конец дроби .

1)  на­ту­раль­ный ло­га­рифм 5 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  на­ту­раль­ный ло­га­рифм 5 минус 1
3)  на­ту­раль­ный ло­га­рифм 5 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  на­ту­раль­ный ло­га­рифм 5 минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
9.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
10.  
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.

1) 216 см3.
2) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 126 см3.
4) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
11.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 24 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 16 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
12.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .

1) (0; 0,5)
2) [−0,6; 0,5)
3) [0; 0,5]
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 2, левая круг­лая скоб­ка 2x плюс 3x в квад­ра­те пра­вая круг­лая скоб­ка dx.

1) 12
2) 6
3) 10
4) 8
14.  
i

Ав­то­мо­биль­ные но­ме­ра в Рос­сии вы­пус­ка­ют­ся на белых, жёлтых, крас­ных, синий и чер­ных пла­стин­ках. Если бы но­ме­ра со­сто­я­ли толь­ко из 4 цифр, сколь­ко раз­ных но­ме­ров могло быть вы­пу­ще­но?

1) 10 000
2) 40 000
3) 50 000
4) 30 000
15.  
i

Чему равен угол \angle MON= альфа , если из­вест­но, что угол \angle KNM=55 гра­ду­сов .

1) 115°
2) 110°
3) 65°
4) 130°
16.  
i

На оси абс­цисс най­ди­те точку, рав­но­уда­лен­ную от точек A (−1; 2) и B (−3; 4).

1) (−3; 4)
2) (−5; 0)
3) (2; 0)
4) (3; −2)
17.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

1) 9
2) 81
3) 169
4) 243
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка
2) [−3; 3)
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
19.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 4x минус 2 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 минус 5x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
3)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби плюс дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
4)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби плюс дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс C
20.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
21.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном купе СВ.

1) 4
2) 1
3) 2
4) 12
22.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном Купе.

1) 3
2) 16
3) 8
4) 12
23.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт B.

1) 812
2) 1260
3) 3072
4) 2862
24.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт А.

1) 2120
2) 680
3) 890
4) 1260
25.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в общем ва­го­не.

1) 6480
2) 5620
3) 2862
4) 1260
26.  
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов ука­жи­те те, 35% ко­то­рых яв­ля­ют­ся целым чис­лом.

1) 50
2) 60
3) 40
4) 30
5) 90
6) 20
27.  
i

Вы­бе­ри­те про­ме­жут­ки, со­дер­жа­щи­е­ся среди ре­ше­ний не­ра­вен­ства  синус x умно­жить на ко­си­нус x боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби на ин­тер­ва­ле  левая круг­лая скоб­ка 0; 3 Пи пра­вая круг­лая скоб­ка .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 25 Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 29 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
28.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния |a минус 7| минус |a| при  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби мень­ше a мень­ше дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби имеет вид:

1) −2a − 7
2) 7 − 2a
3) 2a + 7
4) 7
5) −7
6) 2a − 7
29.  
i

Корни урав­не­ния f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0, где f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе минус 3x в квад­ра­те плюс 15.

1) −4
2) 0
3) 2
4) −3
5) 4
6) −2
30.  
i

На ри­сун­ке изоб­ражён ромб ABCD. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров: а) \overrightarrowDB умно­жить на \overrightarrowAC, б) \overrightarrowAB умно­жить на \overrightarrowAC, в) \overrightarrowAB умно­жить на \overrightarrowAD, если DB = 10,AC = 24.

1) а) 0; б) 292; в) 121
2) а) 1; б) 288; в) 119
3) а) 0; б) 288; в) 119
4) а) 0; б) 282; в) 119
5) а) 0; б) 288; в) 113
6) а) −1; б) 288; в) 119
31.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 2, зна­ме­на­тель: 1 минус i конец дроби минус дробь: чис­ли­тель: 41, зна­ме­на­тель: 4 минус 5i конец дроби .

1) 2 плюс i
2) 3i в квад­ра­те плюс 4i
3) 3i в квад­ра­те минус 4i
4)  минус 3 плюс 4i.
5)  минус 3 минус 4i.
6) 1 минус i
32.  
i

Ре­ши­те урав­не­ние:  синус в квад­ра­те x минус 3 синус x плюс 2=0, при x при­над­ле­жит левая квад­рат­ная скоб­ка 0 гра­ду­сов; 360 гра­ду­сов пра­вая квад­рат­ная скоб­ка .

1) 90°
2) 90°
3)  Пи
4) 270°
5) 2 Пи
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
33.  
i

Даны ко­ор­ди­на­ты вер­шин пря­мо­уголь­ни­ка ABCD: A (1; −1; 1), B (1; 3; 1), C (4; 3; 1), D (4; −1; 1). Най­ди­те ко­ор­ди­на­ты O — цен­тра пря­мо­уголь­ни­ка.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; 1 ; 1 пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 5 ; минус 2 ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; минус 1 ; 1 пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 5 ; 2; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 ; 1 ; 1 пра­вая круг­лая скоб­ка
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 5 ; 2 ; минус 2 пра­вая круг­лая скоб­ка
34.  
i

Hай­ди­те част­ное  дробь: чис­ли­тель: b_1, зна­ме­на­тель: q конец дроби для гео­мет­ри­че­ской про­грес­сии, у ко­то­рой сумма пер­во­го и тре­тье­го чле­нов равна 40, а сумма вто­ро­го и чет­вер­то­го равна 80.

1) 4
2) 6
3) 8
4) 12
35.  
i

SABCD — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, сто­ро­на ос­но­ва­ния ко­то­рой 10, а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та . Най­ди­те пе­ри­метр се­че­ния плос­ко­стью, про­хо­дя­щей через точки B и D па­рал­лель­но ребру AS.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та
2) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 24
5) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та
6) 22 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та