Вариант № 30703

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2062
i

Cокра­ти­те дробь:  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 35 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та конец дроби .



2
Тип 2 № 7870
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на a в сте­пе­ни 4 , зна­ме­на­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка конец дроби   и най­ди­те его зна­че­ние при a= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . В от­ве­те за­пи­ши­те по­лу­чен­ное число.



3
Тип 3 № 6924
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7876
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2ab плюс 5a в квад­ра­те плюс 2b плюс 5a.



5
Тип 5 № 2397
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 2 x в квад­ра­те плюс 15 x плюс 25, зна­ме­на­тель: 5 плюс x конец дроби =0.



6
Тип 6 № 2468
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 81x в квад­ра­те = 99 плюс y в квад­ра­те ,y = 9x минус 3. конец си­сте­мы .



7
Тип 7 № 4172
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.



8
Тип 8 № 8185
i

Об­ра­зу­ю­щая ко­ну­са равна 6 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



9
Тип 9 № 2163
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .



10
Тип 10 № 6944
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4194
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2435
i

Из дан­ных пар чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.



13
Тип 13 № 3285
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).



14
Тип 14 № 7916
i

Вы­чис­ли­те ин­те­грал  ин­те­грал пре­де­лы: от 0 до \tfrac Пи , 6 левая круг­лая скоб­ка синус 5x ко­си­нус 4x минус ко­си­нус 5x синус 4x пра­вая круг­лая скоб­ка dx



15
Тип 15 № 2720
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.



16
Тип 16 № 6963
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .



17
Тип 17 № 3451
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .



18
Тип 18 № 8005
i

Пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ка­ми функ­ций y=x в квад­ра­те минус 1 и y=x плюс 1 равна



19
Тип 19 № 2480
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно



20
Тип 20 № 2437
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...



21
Тип 21 № 7960
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \veca, если \veca=\vecp минус \veci,\vecp= левая круг­лая скоб­ка минус 3;4 пра­вая круг­лая скоб­ка ,\veci= левая круг­лая скоб­ка 1;2 пра­вая круг­лая скоб­ка .



22
Тип 22 № 2151
i

 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ac пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та равен?



23
Тип 23 № 7921
i

Ре­ши­те урав­не­ние: \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка минус 2 минус 3x пра­вая круг­лая скоб­ка =\log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка x в квад­ра­те минус 2 пра­вая круг­лая скоб­ка .



24
Тип 24 № 8030
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка мень­ше или равно минус 2.



25
Тип 25 № 8026
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=2.



26
Тип 26 № 8033
i
Развернуть

Опре­де­ли­те объем ре­зер­ву­а­ра A.



27
Тип 27 № 3222
i
Развернуть

Чему равен пе­ри­метр по­тол­ка в ком­на­те?



28
Тип 28 № 2033
i
Развернуть

Сколь­ко нужно ис­поль­зо­вать ма­те­ри­а­ла (кро­вель­но­го же­ле­за) для по­кры­тия крыши с уче­том швов и об­ре­зок? (округ­ли­те до целых).  левая круг­лая скоб­ка Пи = 3,14 пра­вая круг­лая скоб­ка



29
Тип 29 № 2244
i
Развернуть

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.



30
Тип 30 № 3225
i
Развернуть

Kакова сто­и­мость ре­мон­та стен в ком­на­те, если учесть, что в ком­на­те 2 окна с раз­ме­ра­ми 2 м на 1,5 м и двери вы­со­той 2 м и ши­ри­ной 1 м?



31
Тип 31 № 7724
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус x в квад­ра­те конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1) {3}

2) [−3; 3]

3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

4) {−3; 3}


Ответ:

32
Тип 32 № 7841
i

Пло­щадь диа­мет­раль­но­го се­че­ния шара равна 3. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (3; 5)

2) [10; 14)

3) (0; 1]

4) (7; 10)


Ответ:

33
Тип 33 № 7735
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x3, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x3

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (30; 60)

2) (8; 12]

3) [70; 90]

4) [4; 9)


Ответ:

34
Тип 34 № 7772
i

Даны урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 64 и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 2, 0, 5

2) 8, −1, 3

3) −2, 3, 2

4) 8, 3, 6


Ответ:

35
Тип 35 № 7821
i

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: …; 1,75; x ; 28; −112; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) x

1) −7

2) −4

3) −3

4) −10

2

Ответ:

36
Тип 36 № 3921
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.



37
Тип 37 № 7782
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 12 гра­ду­сов ко­си­нус 18 гра­ду­сов плюс ко­си­нус 12 гра­ду­сов синус 18 гра­ду­сов .



38
Тип 38 № 4018
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям



39
Тип 39 № 8096
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12, новая стро­ка 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =18. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.



40
Тип 40 № 3925
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.


Завершить работу, свериться с ответами, увидеть решения.