Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЕНТ — математика
Вариант № 21728
1.  
i

Упро­сти­те чис­ло­вое вы­ра­же­ние Broken TeX

1) 1
2) 4
3) 0
4) 2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX при Broken TeX

1) 27
2) 18
3) 9
4) 36
3.  
i

Вы­ра­зи­те угол 240° в ра­ди­а­нах.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
4.  
i

При­ве­ди­те од­но­член Broken TeX к стан­дарт­но­му виду.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5.  
i

Ре­ши­те урав­не­ние: Broken TeX

1) 3
2) 2
3) 0
4) 1
6.  
i

Ре­ши­те си­сте­му урав­не­ний: Broken TeX

1) (2; 5)
2) (3; 5)
3) (5; 2)
4) (5; 1)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
8.  
i

Ра­ди­ус шара равен 12 см. Най­ди­те ра­ди­ус се­че­ния шара, если плос­кость се­че­ния со­став­ля­ет угол 45° с ра­ди­у­сом, про­ве­ден­ным в точку се­че­ния ле­жа­щую на сфере.

1) Broken TeX см
2) Broken TeX см
3) Broken TeX см
4) Broken TeX см
9.  
i

Ре­ши­те си­сте­му не­ра­венств: Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
11.  
i

Ука­жи­те одну из пер­во­об­раз­ных для функ­ции Broken TeX при Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
12.  
i

Ре­ши­те не­ра­вен­ство: Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
13.  
i

Точки A(1; 1), B(3; 5) и C(7; 3) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1) Broken TeX
2) Broken TeX
3) 3
4) 4
14.  
i

Вы­чис­ли­те Broken TeX

1) 0
2) −4
3) 8
4) 1
15.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 4 см, а сто­ро­на ос­но­ва­ния — 6 см. Най­ди­те объём пи­ра­ми­ды.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния Broken TeX

1) 1
2) 4
3) 6
4) 7
17.  
i

Ре­ши­те си­сте­му не­ра­венств: Broken TeX

1) (1; 2)
2) (1,5; 2]
3) [1,5; 2]
4) [1; 2]
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: Broken TeX

1) 6
2) 14
3) 2
4) 1,5
19.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
20.  
i

Если сумма с пя­то­го по вось­мой член ариф­ме­ти­че­ской про­грес­сии равна 48, а раз­ность про­грес­сии равна 2, то ее пер­вый член равен

1) 3
2) 2
3) −3
4) 1
21.  
i

Най­ди­те Broken TeX

1) 4
2) 6
3) 5
4) 3
22.  
i

Вы­чис­ли­те: Broken TeX

1) Broken TeX
2) 6
3) Broken TeX
4) 8
23.  
i

Ре­ши­те урав­не­ние Broken TeX

1) 6
2) 3
3) 2
4) −6
24.  
i

Ре­ши­те не­ра­вен­ство Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции Broken TeX в точке с абс­цис­сой Broken TeX если Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
26.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H  =  15 см, R  =  8 см

Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са, π ≈ 3.

1) 178 см2
2) 196 см2
3) 192 см2
4) 186 см2
27.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H  =  15 см, R  =  8 см

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, π ≈ 3.

1) 428 см2
2) 394 см2
3) 402 см2
4) 408 см2
28.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

По эс­ки­зу сцены опре­де­ли­те длину дуги сег­мен­та, от­се­чен­но­го ков­ром. Ответ округ­ли­те до сотых Broken TeX

1) 5,25 м
2) 5,23 м
3) 10,46 м
4) 10,47 м
29.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Опре­де­ли­те пло­щадь ковра на сцене.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
30.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Опре­де­ли­те сумму пло­ща­дей всех сег­мен­тов, от­се­чен­ных ков­ром.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем Broken TeX Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (−1; −4)

2)  {3; −1}

3)  {−3; 1}

4)  (1; 4)

32.  
i

Ра­ди­ус впи­сан­ной в пра­виль­ный тре­уголь­ник окруж­но­сти равен 10. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, пло­ща­дью тре­уголь­ни­ка и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) Broken TeX

2) Broken TeX

3) Broken TeX

4) Broken TeX

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние Broken TeX Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]

34.  
i

Даны урав­не­ния Broken TeX и Broken TeX Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 3

2) 2

3) −1

4) 9

35.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: Broken TeX Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6

Б) Broken TeX

1) −10,8

2) −3,6

3) −7,2

4) −16,6

36.  
i

Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния Broken TeX при a  =  −5.

1) Broken TeX
2) −0,5
3) Broken TeX
4) Broken TeX
5) −0,2
6) 0,5
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX

1) Broken TeX
2) Broken TeX
3) 0
4) 1
5) Broken TeX
6) 2
38.  
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям

1) 18; 10; 2
2) 13; 5; 1
3) 32; 8; 2
4) 27; 9; 3
5) 15; 9; 3
6) 37; 18,5; 9,25
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

Broken TeX

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния Broken TeX

1) Broken TeX
2) 5
3) Broken TeX
4) 3
5) Broken TeX
6) Broken TeX
40.  
i

В пря­мой пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA1B1C1D1E1F1 имеем Broken TeX и Broken TeX Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти и пло­щадь пол­ной по­верх­но­сти дан­ной приз­мы.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX