Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 20377
1.  
i

Вы­чис­ли­те:  левая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .

1) 8
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 4
4) 2
2.  
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка 2 минус c пра­вая круг­лая скоб­ка в квад­ра­те минус c левая круг­лая скоб­ка c плюс 4 пра­вая круг­лая скоб­ка , най­ди­те его зна­че­ние при c=0,5. В ответ за­пи­ши­те по­лу­чен­ное число.

1) 3
2) 0
3) 1
4) 2
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 7 тан­генс 13 гра­ду­сов умно­жить на тан­генс 77 гра­ду­сов .

1) 7
2) −7
3) 14
4) −14
4.  
i

Раз­ло­жи­те квад­рат­ный трех­член 4x в квад­ра­те плюс 9x плюс 2 на мно­жи­те­ли.

1)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
5.  
i

Най­ди­те корни урав­не­ния: |2x минус 6| = 10.

1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
6.  
i

Най­ди­те сумму  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка плюс 81 в сте­пе­ни x = 82,3y в квад­ра­те минус x = 2, конец си­сте­мы . при­чем y < 0.

1) 3
2) 1
3) 0
4) 2
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x в кубе конец дроби минус дробь: чис­ли­тель: 3, зна­ме­на­тель: x конец дроби минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 4x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 3 на­ту­раль­ный ло­га­рифм x плюс C
2)  дробь: чис­ли­тель: 4x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
3)  дробь: чис­ли­тель: 4x плюс 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
4)  дробь: чис­ли­тель: 4x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
8.  
i

Бокал имеет форму ко­ну­са. В него на­ли­та вода на вы­со­ту, рав­ную 4. Если в бокал до­лить воды объ­е­мом, рав­ным одной чет­вер­той объ­е­ма на­ли­той воды, то вода ока­жет­ся на вы­со­те, рав­ной:

1)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 100 конец ар­гу­мен­та
2) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
3) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та
9.  
i

Най­ди­те наи­мень­шее целое ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 5 минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 4x минус 7, зна­ме­на­тель: 2x плюс 3 конец дроби мень­ше 2 конец си­сте­мы .

1) −2
2) −1
3) 1
4) 2
10.  
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
2)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k Пи плюс 3 Пи k,k при­над­ле­жит Z
3)  \pm Пи плюс 6 Пи k,k при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
11.  
i

Най­ди­те про­из­вод­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 3\ln левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка .

1) −3
2)  минус 3x
3)  минус 3 в сте­пе­ни левая круг­лая скоб­ка \ln левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: минус 3, зна­ме­на­тель: x плюс 1 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
13.  
i

Точки A(1; 1), B(3; 5) и C(7; 3) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
3) 3
4) 4
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.

1) 12
2) 24
3) 40
4) 52
15.  
i

Най­ди­те объем пра­виль­ной тре­уголь­ной усе­чен­ной пи­ра­ми­ды, вы­со­та ко­то­рой 6 м и сто­ро­ны ос­но­ва­ний 3 м и 4 м.

1)  дробь: чис­ли­тель: 19 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
2)  дробь: чис­ли­тель: 39 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
3) \frca27 ко­рень из 3 2 м3
4)  дробь: чис­ли­тель: 37 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
16.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус 8x конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та .

1) 1
2) 6
3) 0
4) 4
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2x плюс y в квад­ра­те пра­вая круг­лая скоб­ка =1,2 в сте­пе­ни левая круг­лая скоб­ка x плюс y в квад­ра­те пра­вая круг­лая скоб­ка минус 4=0. конец си­сте­мы .

1) ре­ше­ний нет
2) (1; −2)
3) (−1; 1), (1; 1)
4) (1; −1), (1; 1)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=x,0 мень­ше или равно x мень­ше или равно 3.

1) 2,25
2) 2
3) 4
4) 4,5
19.  
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?

1) 15°
2) 12°
3) 20°
4) 18°
20.  
i

Гео­мет­ри­че­ская про­грес­сия {bn} — воз­рас­та­ю­щая, b_2=4, b_4=36. Най­ди­те b5.

1) 122
2) 36
3) 81
4) 108
21.  
i

Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowCD, если \overrightarrowAB= левая круг­лая скоб­ка 2;3;1 пра­вая круг­лая скоб­ка ; \overrightarrowCD= левая круг­лая скоб­ка минус 2; минус 3;1 пра­вая круг­лая скоб­ка .

1) −10
2) −12
3) 15
4) −11
22.  
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 3a в квад­ра­те , зна­ме­на­тель: 2b конец дроби пра­вая круг­лая скоб­ка в кубе умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 2b в квад­ра­те , зна­ме­на­тель: 3a в кубе конец дроби пра­вая круг­лая скоб­ка в квад­ра­те .

1)  дробь: чис­ли­тель: a, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: b, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 3 b, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 3 a, зна­ме­на­тель: 2 конец дроби
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
24.  
i

Ре­ши­те не­ра­вен­ство \log _4 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше или равно 0,5.

1)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус x плюс 2,x_0= минус 1.

1) x минус 1
2)  минус 3x минус 1
3) 3x плюс 1
4)  минус 3x плюс 1
26.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном купе СВ.

1) 4
2) 1
3) 2
4) 12
27.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?

1) 120
2) 320
3) 5040
4) 1400
28.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?

1)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
29.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт А.

1) 2120
2) 680
3) 890
4) 1260
30.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Из­го­то­ви­тель вы­брал упа­ков­ку для Пи­ра­мид­ки в виде сферы. Каким дол­жен быть диа­метр упа­ков­ки?

1)  дробь: чис­ли­тель: 3 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
2)  дробь: чис­ли­тель: 2 ко­рень из 6 , зна­ме­на­тель: 3 конец дроби см
3)  дробь: чис­ли­тель: 5 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
4)  дробь: чис­ли­тель: 9 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 3 синус x плюс 3. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−2; 4]

2)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3) [0; 6]

4)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

32.  
i

Куб, объем ко­то­ро­го равен 8, впи­сан в шар. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (0; 1)

2) [3; 4]

3) (1; 2]

4) (33; 40)

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) [−1; 0]

2) (−55; −36)

3) [−39; −30]

4) [5; 14)

34.  
i

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = 27 умно­жить на 9 в сте­пе­ни x и  дробь: чис­ли­тель: x в квад­ра­те минус 7x плюс 10, зна­ме­на­тель: x минус 5 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 3, 1, 7

2) 2, 5, 0

3) 0, 1, 4

4) 3, −1, 2

35.  
i

Гео­мет­ри­че­ская про­грес­сия за­да­ет­ся фор­му­лой  b_n =164 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни n . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b1

Б) S4

1) 41

2) 71

3) 82

4) 153,75

2
36.  
i

Вы­чис­ли­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: \abs минус 2,5 плюс 4,6, зна­ме­на­тель: минус 1,6 плюс \abs2 умно­жить на 3,5 минус \abs минус 4 конец дроби .

1) 1,7
2) 1,5
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
5) 1,5
6)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби тан­генс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби .

1)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
2)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4)  минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
38.  
i

Сумма цифр че­ты­рех­знач­но­го числа равна 16 и все цифры числа об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. При­чем, цифра еди­ниц на 4 боль­ше цифры сотен. Вы­бе­ри­те вер­ные утвер­жде­ния.

1) по­след­няя цифра чет­ная
2) пер­вые две цифры в сумме боль­ше по­след­ней
3) вто­рая и по­след­няя цифры в сумме дают 10
4) пер­вая цифра не­чет­ная
5) число из по­след­них двух цифр мень­ше 50
6) про­из­ве­де­ние всех цифр мень­ше 105
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.

1)  минус дробь: чис­ли­тель: 17, зна­ме­на­тель: 120 конец дроби
2)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 60 конец дроби
3)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 60 конец дроби
4)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 60 конец дроби
5)  минус дробь: чис­ли­тель: 37, зна­ме­на­тель: 60 конец дроби
6)  минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 120 конец дроби
40.  
i

Hай­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, по­лу­чив­ше­го­ся вра­ще­ни­ем куба со сто­ро­ной рав­ной 2 см во­круг пря­мой АА1.

1)  8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см в квад­ра­те
2)  Пи ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см в квад­ра­те
3) 4 Пи ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см в квад­ра­те
4)  2 Пи ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см в квад­ра­те
5)  8 Пи ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в квад­ра­те
6)  8 Пи ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см в квад­ра­те