Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 10338
1.  
i

Два числа от­но­сят­ся как 7 : 8, а их сумма равна 180. Най­ди­те мень­шее из дан­ных чисел.

1) 72
2) 54
3) 84
4) 56
2.  
i

Най­ди­те z, если \mathfrak Im z=3, z=x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка плюс 4 плюс левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус 9 пра­вая круг­лая скоб­ка i.

1) z=6 плюс 3i
2) z= минус 16 плюс 3i
3) z=16 плюс 3i
4) z=16 минус 3i
3.  
i

Упро­сти­те вы­ра­же­ние:  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та умно­жить на дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 64 конец ар­гу­мен­та конец дроби умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .

1) −3
2) 2,5
3) −2,5
4) −3,5
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус 54 гра­ду­сов умно­жить на синус 18 гра­ду­сов .

1) 0,125
2) 0,5
3) 1
4) 0,25
5.  
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 825 конец дроби
2)  целая часть: 21, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 625
3)  целая часть: 21, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 825
4)  целая часть: 12, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 825
6.  
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.

1) 0
2) 1
3) −1
4) −5
7.  
i

Най­ди­те (x − y), если пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 25,xy в квад­ра­те = 5. конец си­сте­мы .

1) 4
2) −5
3) −4
4) 5
8.  
i

Вы­чис­ли­те: \lim_x arrow 2 дробь: чис­ли­тель: тан­генс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 x минус 8 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2) 1,5
3) 0,5
4) 0,25
9.  
i

Cколь­ко сто­рон имеет пра­виль­ный мно­го­уголь­ник, если гра­дус­ная мера его внут­рен­не­го угла равна 160°?

1) 36
2) 12
3) 24
4) 18
10.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, в ос­но­ва­нии ко­то­рой рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 27 см и каж­дое ребро пи­ра­ми­ды об­ра­зу­ет угол 45° с плос­ко­стью ос­но­ва­ния.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
11.  
i

Ре­ши­те урав­не­ние:  арк­си­нус x = ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  синус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
12.  
i

Най­ди­те целые по­ло­жи­тель­ные ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 1 минус 0,5x мень­ше 4 плюс x,9 минус 2,8x боль­ше или равно 6 минус 1,3x. конец си­сте­мы .

1) 0; 1; 2
2) 1; 2; 3; 4
3) 0; 1; 2; 3
4) 1; 2
13.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=3x,0 мень­ше или равно x мень­ше или равно 4.

1) 2
2) 4
3) 16
4) 8
14.  
i

Сколь­ко четырёхзнач­ных на­ту­раль­ных чисел, цифры ко­то­рых не по­вто­ря­ют­ся, за­пи­сы­ва­ют­ся циф­ра­ми 0, 1, 2, 3, 4, 5 и со­дер­жат ровно одну трой­ку?

1) 60
2) 144
3) 204
4) 207
15.  
i

В окруж­но­сти с цен­тром O по­стро­е­ны две рав­ные хорды AB и AC. Угол ABC равен 20. Угол BOC равен

1) 120°
2) 140°
3) 45°
4) 80°
16.  
i

Най­ди­те угол между пря­мы­ми, за­дан­ны­ми па­ра­мет­ри­че­ски:

 си­сте­ма вы­ра­же­ний x = 2t плюс 1,y = t, z = минус t минус 1 конец си­сте­мы .

и

 си­сте­ма вы­ра­же­ний x = t плюс 2,y = минус 2t плюс 1, z = 1 конец си­сте­мы .

1)  арк­ко­си­нус 0,25
2) 90°
3) 45°
4)  арк­ко­си­нус 0,65
17.  
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби ; 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 81
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше x минус 2,5x плюс 10 боль­ше или равно 0. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3) [1; 2]
4)  левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
19.  
i

Ука­жи­те одну из пер­во­об­раз­ных для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 6, зна­ме­на­тель: x конец дроби , при x боль­ше 0.

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби на­ту­раль­ный ло­га­рифм x
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = на­ту­раль­ный ло­га­рифм x
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6 на­ту­раль­ный ло­га­рифм x
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 6 на­ту­раль­ный ло­га­рифм x
20.  
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 13 Пи см2
2) 15 Пи см2
3) 16 Пи см2
4) 12 Пи см2
21.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

B 2020 году до­бы­ча нефти со­ста­ви­ла 91 млн тонн в год. На сколь­ко про­цен­тов пла­ни­ру­ет­ся по­вы­ше­ние до­бы­чи нефти к 2025 году (ответ округ­ли­те до целых)?

1) на 20%
2) на 18%
3) на 12%
4) на 15%
22.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Oпре­де­ли­те гра­дус­ную меру сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).

1) 82°
2) 123°
3) 114°
4) 74°
23.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Oпре­де­ли­те объем до­бы­чи нефти в 2020 году не­дро­поль­зо­ва­те­лем НКОК «Ка­ша­ган» в млн тонн (ответ округ­ли­те до де­ся­тых)

1) 15,2 млн тонн
2) 13,3 млн тонн
3) 10,2 млн тонн
4) 10,8 млн тонн
24.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Ис­поль­зуя дан­ные диа­грам­мы, опре­де­ли­те, во сколь­ко раз боль­ше нефти до­бы­ва­ет­ся су­пер­ги­ган­том «Тен­гиз­шев­ройл» по срав­не­нию с «Ман­ги­ста­у­му­най­каз» (ответ за­пи­ши­те в виде обык­но­вен­ной дроби)

1)  целая часть: 6, дроб­ная часть: чис­ли­тель: 6, зна­ме­на­тель: 7
2)  целая часть: 4, дроб­ная часть: чис­ли­тель: 32, зна­ме­на­тель: 71
3)  целая часть: 2, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 7
4)  целая часть: 3, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 71
25.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Hай­ди­те раз­ни­цу гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» и гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти НКОК (Ка­ша­ган) на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).

1) 74°
2) 65°
3) 61°
4) 100°
26.  
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов ука­жи­те те, 35% ко­то­рых яв­ля­ют­ся целым чис­лом.

1) 50
2) 60
3) 40
4) 30
5) 90
6) 20
27.  
i

B какой ко­ор­ди­нат­ной чет­вер­ти на­хо­дит­ся угол, рав­ный 1 ра­ди­ан?

1) IV
2) II и III
3) I и II
4) II
5) III
6) I
28.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов вы­бе­ри­те те, ко­то­рые равны остат­ку от де­ле­ния мно­го­чле­на x2 − 3x + 5 на дву­член x − 1.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 2
3) 1
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
6) 3
29.  
i

Две точки с абс­цис­са­ми x_1=1 и x_2=3 при­над­ле­жит па­ра­бо­ле за­дан­ной фор­му­лой y=x в квад­ра­те минус 4. Через точки про­ве­де­на пря­мая. В какой точке па­ра­бо­лы ка­са­тель­ная будет па­рал­лель­на про­ве­ден­ной пря­мой.

1) (−3; 5)
2) (−2; 0)
3) (1; −3)
4) (2; 0)
5) (3; 5)
6) (4; 12)
30.  
i

Най­ди­те угол между век­то­ра­ми \overrightarrowAB и \overrightarrowCD, если \overrightarrowAB= левая круг­лая скоб­ка минус 3;4;0 пра­вая круг­лая скоб­ка ; \overrightarrowCD= левая круг­лая скоб­ка 5;0; минус 12 пра­вая круг­лая скоб­ка .

1)  арк­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка
2)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка
3)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка
4)  минус арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка
5)  Пи плюс арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка
6)  минус арк­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка
31.  
i

Числа z = ко­рень из 3 x плюс 5i и \vecz = ко­рень из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та плюс yi вза­им­но со­пря­жен­ные. Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жат зна­че­ния чисел x и y.

1)  левая квад­рат­ная скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 5; 3 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 5; 3 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая круг­лая скоб­ка
32.  
i

Ука­жи­те об­рат­ную функ­цию для функ­ции: y = 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка минус 1.

1) y = ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 5
2) y = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 4
3) y = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4
4) y = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 5
5) y = ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 5
6) y = ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 5
33.  
i

Пло­щадь круга, впи­сан­но­го в пра­виль­ный ше­сти­уголь­ник, равна 300π см2. Ка­ко­му про­ме­жут­ку при­над­ле­жит сто­ро­на ше­сти­уголь­ни­ка?

1)  левая квад­рат­ная скоб­ка 20; 70 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 25; 30 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 20; 70 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 20; 40 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 50; 70 пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 50; 70 пра­вая круг­лая скоб­ка
34.  
i

Tело, падая с не­ко­то­рой вы­со­ты, про­хо­дит в первую се­кун­ду 4,5 м, а каж­дую сле­ду­ю­щую — на 5,8 м боль­ше. С какой вы­со­ты упало тело, если па­де­ние про­дол­жа­лось 11 с?

1)  целая часть: 72, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 м
2)  целая часть: 62, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 м
3) 343,75 м
4) 72,5 м
5)  целая часть: 368, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 м
6) 368,5 м
35.  
i

От­ре­зок DC пер­пен­ди­ку­ля­рен плос­ко­сти пря­мо­уголь­но­го тре­уголь­ни­ка ABC, ∠B  =  90°. Тре­уголь­ник ACD рав­но­бед­рен­ный. Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию синус угла между плос­ко­стью ADB и ABC, если AD = 5 ко­рень из 2 , AB  =  3.

1)  дробь: чис­ли­тель: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 41 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 41 конец дроби
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 41 конец дроби
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6)  дробь: чис­ли­тель: 5 ко­рень из 5 , зна­ме­на­тель: 41 конец дроби