Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 23907
1.  
i

Вы­пол­ни­те дей­ствия с ра­ди­ка­ла­ми  ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: целая часть: 3, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 9 конец ар­гу­мен­та .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та
2) 1
3) 2
4) 0
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 2c минус 4, зна­ме­на­тель: cd минус 2d конец дроби   и най­ди­те его зна­че­ние при c=0,5; d=5.

1) 1
2) 0,4
3) 0,2
4) 0,5
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: \ctg левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4.  
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 8x плюс 6 на мно­жи­те­ли.

1)  левая круг­лая скоб­ка 2x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те
5.  
i

Ука­жи­те урав­не­ние, не яв­ля­ю­ще­е­ся ли­ней­ным урав­не­ни­ем с двумя пе­ре­мен­ны­ми.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби x минус y = 7
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7x конец дроби минус y = минус 7
3)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби плюс y = 7
4)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби минус y = минус 7
6.  
i

Най­ди­те число А, если A = x умно­жить на y, где (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 9,xy в квад­ра­те = 3. конец си­сте­мы .

1) −3
2) −1
3) 0
4) 3
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
2)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
3)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
4)  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
8.  
i

Усе­чен­ный конус, у ко­то­ро­го ра­ди­у­сы ос­но­ва­ний равны 7 и 8, и пол­ный конус такой же вы­со­ты рав­но­ве­ли­ки. Най­ди­те ра­ди­ус ос­но­ва­ния пол­но­го ко­ну­са.

1) 13
2) 10
3) 12
4) 15
9.  
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний x в квад­ра­те боль­ше или равно 2,25, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1. конец си­сте­мы .

1) (−3; −1]
2) [−3; −1,5)
3) [−1; 1,5]
4) [−3; −1,5]
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 5x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 30 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 20 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 15 конец дроби
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции y = x в квад­ра­те плюс ко­рень из: на­ча­ло ар­гу­мен­та: 8x минус 4 конец ар­гу­мен­та плюс ко­рень из 8 в точке x0  =  1.

1) 1
2) 5
3) 2
4) 4
12.  
i

Oпре­де­ли­те длину про­ме­жут­ка, со­от­вет­ству­ю­ще­го ре­ше­нию не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x в кубе минус 64 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в кубе плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: минус 1 минус x в квад­ра­те конец дроби боль­ше или равно 0.

1) 3
2) 2
3) 5
4) 4
13.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.

1) 7
2) 4
3) 6
4) 2
14.  
i

Вы­чис­ли­те  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 2 x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка d x.

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
15.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
16.  
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 1.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 0
4) −1
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 6x плюс 12 конец ар­гу­мен­та мень­ше 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , ко­рень из: на­ча­ло ар­гу­мен­та: минус 3x плюс 5 конец ар­гу­мен­та боль­ше или равно 5. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 6, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая квад­рат­ная скоб­ка
3) \varnothing
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ком функ­ции y = x в квад­ра­те минус 6x плюс 9 и гра­фи­ком ее про­из­вод­ной.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4) 1
19.  
i

Тра­пе­ция впи­са­на в окруж­ность так, что её боль­шее ос­но­ва­ние сов­па­да­ет с диа­мет­ром, а бо­ко­вая сто­ро­на равна ра­ди­у­су окруж­но­сти. Мень­ший угол тра­пе­ции равен?

1) 70°
2) 45°
3) 55°
4) 60°
20.  
i

Гео­мет­ри­че­ская про­грес­сия за­да­на усло­ви­ем: b_1 = 3, b_n плюс 1 = 2 умно­жить на b_n. Най­ди­те пятый член дан­ной про­грес­сии.

1) 52
2) 32
3) 48
4) 24
21.  
i

Упро­сти­те вы­ра­же­ние:  минус \overrightarrowCG плюс \overrightarrowBG минус левая круг­лая скоб­ка \overrightarrowEC минус \overrightarrowAB пра­вая круг­лая скоб­ка минус \overrightarrowAM.

1) \overrightarrowCE
2) \overrightarrowMB
3) \overrightarrowME
4) \overrightarrowBC
22.  
i

Упро­сти­те:  дробь: чис­ли­тель: левая круг­лая скоб­ка 3 a в квад­ра­те b в кубе пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 18 a b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка конец дроби .

1) 0,6a в квад­ра­те
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a в квад­ра­те
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a в сте­пе­ни 4
4) 0,5a в кубе
23.  
i

Ре­ши­те урав­не­ние \log _5 левая круг­лая скоб­ка 2 минус \log _2 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =1.

1)  дробь: чис­ли­тель: 23, зна­ме­на­тель: 8 конец дроби
2)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: 21, зна­ме­на­тель: 8 конец дроби
4)  дробь: чис­ли­тель: 15, зна­ме­на­тель: 8 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 5 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус x конец ар­гу­мен­та боль­ше 0.

1)  левая квад­рат­ная скоб­ка минус 5; 5 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус 5; 5 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=1.

1) y = ex
2) y = e в сте­пе­ни x
3) y = ex плюс 1
4) y = ex минус 1
26.  
i

В кре­стьян­ском хо­зяй­стве взве­си­ли клуб­ни кар­то­фе­ля. Массы клуб­ней (в грам­мах) при­ве­де­ны в таб­ли­це.

6059
5759
5658
6161
5859

Опре­де­ли­те объем вы­бор­ки.

1) 15
2) 12
3) 16
4) 10
27.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния не­чет­но­го числа равна

1) 3
2) 2
3) 6
4) 9
28.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме число 5?

1) 3
2) 6
3) 9
4) 4
29.  
i

В кре­стьян­ском хо­зяй­стве взве­си­ли клуб­ни кар­то­фе­ля. Массы клуб­ней (в грам­мах) при­ве­де­ны в таб­ли­це.

6059
5759
5658
6161
5859

Най­ди­те сред­нюю массу клуб­ня кар­то­фе­ля.

1) 59,5 г
2) 57,2 г
3) 59,3 г
4) 58,8 г
30.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ка­ко­ва ве­ро­ят­ность того, что сумма чисел на двух иг­раль­ных ку­би­ках будет чет­ным чис­лом.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 1)

2)  {−1; 1}

3)  {2; 0}

4)  (0; −1)

32.  
i

Впи­сан­ная окруж­ность раз­де­ли­ла ги­по­те­ну­зу тре­уголь­ни­ка на от­рез­ки 4 и 6. Уста­но­ви­те со­от­вет­ствие между дли­на­ми ка­те­тов тре­уголь­ни­ка и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Боль­ший катет тре­уголь­ни­ка

Б) Мень­ший катет тре­уголь­ни­ка

1) (3; 5)

2) (7; 9)

3) (6; 7)

4) [5; 6]

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) [2; 3)

2) (1; 3)

3) (7; 8]

4) [3; 4)

34.  
i

Даны урав­не­ния  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 3, −3

2) 0, −3, 4

3) 2, 3, 7

4) −1, 2, 3

35.  
i

У гео­мет­ри­че­ской про­грес­сии  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка из­вест­но, что  b_1=2, q= минус 2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 32

2) 16

3) 11

4) 22

36.  
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых чис­лен­но равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 синус 60 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
2)  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
3)  тан­генс 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
4) 2 тан­генс 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
5) \ctg 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
6)  минус \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 24, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

1) 18
2) 32
3) –9
4) –18
5) 9
6) –32
38.  
i

Най­ди­те все зна­че­ния х, при ко­то­рых числа \left| x минус 1 |,3 минус x,3x минус 5, рас­по­ло­жен­ные в каком-либо по­ряд­ке, об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию, раз­ность ко­то­рой боль­ше 1.

1)  левая квад­рат­ная скоб­ка минус 1; дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ;6 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 1; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
39.  
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка x в квад­ра­те плюс 3xy=18, новая стро­ка 3y в квад­ра­те плюс xy=6. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 минус x_2y_2.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 0 конец ар­гу­мен­та
3) 0
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 3
40.  
i

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров \overrightarrowAK и  \overrightarrowFB.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 0; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1 ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; минус 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 0 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 0 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1 ; 0 ; 1 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; 1 пра­вая круг­лая скоб­ка