Вариант № 5902

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип Д36 A36 № 3557
i

Из 200 шаров — 16 крас­ные. Из всех шаров крас­ные со­став­ля­ют?



2
Тип Д37 A37 № 1976
i

Вы­пол­ни­те дей­ствие  левая круг­лая скоб­ка 2 плюс 3i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка и опре­де­ли­те дей­стви­тель­ную часть числа



3
Тип 1 № 3457
i

Упро­сти­те вы­ра­же­ние:  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та умно­жить на дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 64 конец ар­гу­мен­та конец дроби умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .



4
Тип 3 № 3698
i

Вы­ра­зи­те угол 240° в ра­ди­а­нах.



5
Тип 22 № 2201
i

Вы­чис­ли­те:  дробь: чис­ли­тель: 72 в сте­пе­ни левая круг­лая скоб­ка 2k плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 в сте­пе­ни левая круг­лая скоб­ка 6k пра­вая круг­лая скоб­ка умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка 1 минус k пра­вая круг­лая скоб­ка конец дроби .



6
Тип 12 № 2086
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.



7
Тип 6 № 1981
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус 2y = 4,5x плюс 2y = 20 конец си­сте­мы .



8
Тип Д38 A38 № 4112
i

Вы­чис­ли­те пре­дел \undersetx\to минус бес­ко­неч­ность \mathop\lim левая круг­лая скоб­ка x в квад­ра­те плюс 2x минус 1 пра­вая круг­лая скоб­ка .



9
Тип 19 № 2165
i

Сто­ро­на ромба равна 12. Ко­си­нус од­но­го из его углов равен  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Пло­щадь ромба равна



10
Тип 15 № 2020
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.



11
Тип 10 № 1985
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0



12
Тип 9 № 1986
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2x минус 5 мень­ше 4 минус x,7x минус 1 боль­ше или равно 9 плюс 12x конец си­сте­мы .



13
Тип 18 № 4146
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=3x,0 мень­ше или равно x мень­ше или равно 4.



14
Тип Д39 A39 № 4249
i

Сколь­ко су­ще­ству­ет се­ми­знач­ных те­ле­фон­ных но­ме­ров с не­по­вто­ря­ю­щи­ми­ся циф­ра­ми и не на­чи­на­ю­щих­ся с нуля?



15
Тип Д40 A40 № 1989
i

Со­ставь­те урав­не­ние окруж­но­сти с цен­тром в точке O (3; 4), если точка A (6; 8) лежит на окруж­но­сти



16
Тип Д41 A41 № 3216
i

Па­ра­мет­ри­че­ские урав­не­ния пря­мой, про­хо­дя­щей через точки A1(−2; 1; −3) и A2(4; 5; 6), имеют вид:



17
Тип 23 № 1971
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .



18
Тип 17 № 3857
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше x минус 2,5x плюс 10 боль­ше или равно 0. конец си­сте­мы .



19
Тип 7 № 4182
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 5 синус x плюс 2 ко­си­нус x пра­вая круг­лая скоб­ка dx.



20
Тип 8 № 1954
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен



21
Тип 26 № 2696
i
Развернуть

Вы­со­та шатра равна:



22
Тип 27 № 2697
i
Развернуть

Ра­ди­ус ниж­не­го ос­но­ва­ния шатра равен?



23
Тип 28 № 2698
i
Развернуть

Опре­де­ли­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дри­че­ской части шатра  левая круг­лая скоб­ка Пи \approx3 пра­вая круг­лая скоб­ка .



24
Тип 29 № 2699
i
Развернуть

Опре­де­ли­те длину об­ра­зу­ю­щей верх­ней части шатра?



25
Тип 30 № 2700
i
Развернуть

Бо­ко­вая по­верх­ность, верх­ней части шатра равна  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка



26
Тип 36 № 2211
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).



27
Тип Д42 A42 № 4617
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка ко­си­нус x боль­ше или равно 1\ пра­вая квад­рат­ная скоб­ка .



28
Тип Д43 A43 № 3596
i

Упро­сти­те вы­ра­же­ние

 4 левая круг­лая скоб­ка 3 a минус 2,5 b пра­вая круг­лая скоб­ка минус 11 левая круг­лая скоб­ка a минус 2 b пра­вая круг­лая скоб­ка минус 65 a b минус 13 левая круг­лая скоб­ка b минус 5 a b пра­вая круг­лая скоб­ка

и най­ди­те его зна­че­ние при a= минус 1 и b=2. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния.



29
Тип Д44 A44 № 2042
i

Най­ди­те про­из­вод­ную функ­ции: y = дробь: чис­ли­тель: 2x плюс 1, зна­ме­на­тель: x в квад­ра­те конец дроби .



30
Тип Д45 A45 № 6899
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \overrightarrowAB, если из­вест­но, что A левая круг­лая скоб­ка 2; минус 3; минус 10 пра­вая круг­лая скоб­ка ; \ левая квад­рат­ная скоб­ка C левая круг­лая скоб­ка минус 5;2;3 пра­вая круг­лая скоб­ка ,\ пра­вая квад­рат­ная скоб­ка B — се­ре­ди­на от­рез­ка AC.



31
Тип Д46 A46 № 4064
i

Вы­чис­ли­те  дробь: чис­ли­тель: 2, зна­ме­на­тель: 1 плюс i конец дроби плюс дробь: чис­ли­тель: 25, зна­ме­на­тель: 3 минус 4i конец дроби .



32
Тип Д47 A47 № 2110
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка мень­ше или равно 2,x в квад­ра­те минус 9 боль­ше или равно 0. конец си­сте­мы . Най­ди­те наи­боль­шее ре­ше­ние си­сте­мы не­ра­венств.



33
Тип Д48 A48 № 3832
i

В рав­но­бед­рен­ной тра­пе­ции ABCD с боль­шим ос­но­ва­ни­ем AD пер­пен­ди­ку­ляр BN делит ос­но­ва­ние AD на от­рез­ки 3,5 см и 8,5 см. Най­ди­те ос­но­ва­ния этой тра­пе­ции.



34
Тип 20 № 2058
i

Cумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 9, а сумма квад­ра­тов чле­нов про­грес­сии 40,5. Най­ди­те зна­ме­на­тель дан­ной про­грес­сии.



35
Тип 40 № 2465
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.


Завершить работу, свериться с ответами, увидеть решения.