Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 267
1.  
i

Число a со­став­ля­ет 20% от числа b и мень­ше его на 100. Сумма чисел a и b равна

1) 120
2) 130
3) 140
4) 150
2.  
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме:  левая круг­лая скоб­ка 3 минус 2i пра­вая круг­лая скоб­ка плюс 2 левая круг­лая скоб­ка 5 плюс i пра­вая круг­лая скоб­ка минус 14.

1) z= минус 1 плюс 2i
2) z=1
3) z=1 минус i
4) z= минус 1
3.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 49 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка умно­жить на 625 в сте­пе­ни левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 5 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в кубе конец дроби .

1) 25
2) 245
3) 49
4) 135
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус в квад­ра­те альфа минус ко­си­нус альфа плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та тан­генс альфа при  альфа = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .

1)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
2)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
3)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
4)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
5.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1,5 пра­вая круг­лая скоб­ка .

1) 1
2) x в квад­ра­те
3) x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
6.  
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.

1) 0
2) 1
3) −1
4) −5
7.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 3x_0 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби y_0, где (x0; y0) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 2y в квад­ра­те = 1,x минус y в квад­ра­те = 1. конец си­сте­мы .

1) 0
2) 3
3) −3
4) 10
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to бес­ко­неч­ность \mathop\lim дробь: чис­ли­тель: минус 2x в квад­ра­те плюс 6x минус 1, зна­ме­на­тель: x в квад­ра­те минус 2x конец дроби .

1) 1
2) −1
3) −2
4) 0
9.  
i

Ко­си­нус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 13 см, 14 см, 15 см равен?

1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
10.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, каж­дое бо­ко­вое ребро ко­то­рой равно 10 см и в ос­но­ва­нии квад­рат со сто­ро­ной 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
2) 8 см
3) 6 см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
11.  
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов най­ди­те серию, со­дер­жа­щую все ре­ше­ния урав­не­ния  синус 3 x плюс ко­си­нус 3 x=0.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс 3 Пи n,  n при­над­ле­жит Z
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 3 конец дроби ,  n при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи n,  n при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 3 конец дроби ,  n при­над­ле­жит Z
12.  
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний x в квад­ра­те боль­ше или равно 2,25, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1. конец си­сте­мы .

1) (−3; −1]
2) [−3; −1,5)
3) [−1; 1,5]
4) [−3; −1,5]
13.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.

1) 12
2) 24
3) 40
4) 52
14.  
i

Сколь­ки­ми спо­со­ба­ми можно со­ста­вить хо­ро­вод из четырёх де­ву­шек?

1) 120
2) 6
3) 24
4) 16
15.  
i

Hа ри­сун­ке СЕ = 20. Ра­ди­у­сы окруж­но­стей О1В = 5 и О2А = 7. Длина от­рез­ка АВ равна

1) 1,4
2) 2,2
3) 3
4) 4
16.  
i

Най­ди­те длину от­рез­ка АВ, если A(2; 4), B(4; 6).

1) 2
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 8
17.  
i

Ре­ши­те не­ра­вен­ство: 2 синус x минус 1 боль­ше 0.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи n ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс m пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
18.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний y минус x=1, 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12. конец си­сте­мы .

1) (3; 4)
2) (0; 1)
3) (3; 2)
4) (2; 3)
19.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби синус 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ко­си­нус x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби синус x плюс C
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ко­си­нус 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби синус 3x плюс C
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ко­си­нус 2x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби синус 3x плюс C
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби синус 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ко­си­нус 3x плюс C
20.  
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна

1) 10 м
2) 4 м
3) 6 м
4) 8 м
21.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Для новых 3 про­грам­ми­стов име­ет­ся 4 ра­бо­чих места, обо­ру­до­ван­ных пер­со­наль­ны­ми ком­пью­те­ра­ми. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми но­вич­ки могут вы­брать себе ра­бо­чее место.

1) 26
2) 21
3) 18
4) 24
22.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Пред­при­я­тию тре­бу­ет­ся 3 про­грам­ми­ста. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми их можно вы­брать.

1) 2
2) 6
3) 8
4) 4
23.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Hа со­бе­се­до­ва­ния при­гла­ша­ли 2 эко­но­ми­ста или 3 ме­не­дже­ра, но вы­де­ли­ли на 5 дней мень­ше, чем ко­ли­че­ство воз­мож­ных спо­со­бов та­ко­го вы­бо­ра. Ука­жи­те ко­ли­че­ство дней, вы­де­лен­ных на со­бе­се­до­ва­ния.

1) 5 дней
2) 18 дней
3) 13 дней
4) 8 дней
24.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Пред­при­я­тие при­ни­ма­ет 3 ме­не­дже­ров, за ко­то­ры­ми долж­ны за­кре­пить 5 фирм. Ука­жи­те, сколь­ки­ми спо­со­ба­ми можно рас­пре­де­лить 5 фирм между 3-мя ра­бот­ни­ка­ми.

1) 150
2) 45
3) 20
4) 243
25.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Bычис­ли­те ве­ро­ят­ность, что из всех, по­дав­ших ре­зю­ме, тру­до­устро­ят­ся 2 эко­но­ми­ста, 3 ме­не­дже­ра и 3 про­грам­ми­ста (ответ округ­ли­те до сотых).

1) 0,12
2) 0,24
3) 0,15
4) 0,21
26.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 353 в квад­ра­те минус 272 в квад­ра­те конец ар­гу­мен­та крат­но чис­лам?

1) 5
2) 4
3) 8
4) 6
5) 11
6) 3
27.  
i

Вы­бе­ри­те про­ме­жут­ки, со­дер­жа­щи­е­ся среди ре­ше­ний не­ра­вен­ства  синус x умно­жить на ко­си­нус x боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби на ин­тер­ва­ле  левая круг­лая скоб­ка 0; 3 Пи пра­вая круг­лая скоб­ка .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 25 Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 29 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
28.  
i

Сумма двух по­сле­до­ва­тель­ных на­ту­раль­ных чисел, за­дан­ных вида 3n, равна 21, а их про­из­ве­де­ние 108. Ука­жи­те дан­ные числа.

1) 10
2) 7
3) 9
4) 9
5) 12
6) 8
29.  
i

На­пи­ши­те урав­не­ние общей ка­са­тель­ной к па­ра­бо­лам: y = x в квад­ра­те плюс 4x плюс 8 и y=x в квад­ра­те плюс 8x плюс 4.

1) y=8x плюс 4
2) y = минус x минус 2
3) y=8x плюс 4
4) 8x минус y плюс 4 = 0
5) x плюс y плюс 2 = 0
6) y = минус x
30.  
i

Hай­ди­те рас­сто­я­ние от точки А (1; 2; 3) до плос­ко­сти, за­дан­ной урав­не­ни­ем 2x плюс у плюс 2z=4.

1) 4
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
3) 0,5
4) 1
5) 2
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
31.  
i

Вы­чис­ли­те  левая круг­лая скоб­ка дробь: чис­ли­тель: 1 минус i, зна­ме­на­тель: 1 плюс i конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 40 пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1 минус i, зна­ме­на­тель: 1 плюс i конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 52 пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка минус i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 40 пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 52 пра­вая круг­лая скоб­ка
2) i в сте­пе­ни левая круг­лая скоб­ка 92 пра­вая круг­лая скоб­ка
3) i в сте­пе­ни левая круг­лая скоб­ка 40 пра­вая круг­лая скоб­ка
4) i в сте­пе­ни левая круг­лая скоб­ка 40 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 52 пра­вая круг­лая скоб­ка
5) 2
6) i в сте­пе­ни левая круг­лая скоб­ка 52 пра­вая круг­лая скоб­ка
32.  
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 2x плюс y = 0,25 в сте­пе­ни x умно­жить на 2 в сте­пе­ни y = 0,4. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 2 ; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка 0 ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3 ; 4 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус 3 ; 3 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус 4 ; 4 пра­вая круг­лая скоб­ка
33.  
i

Bычис­ли­те пло­щадь круга, опи­сан­но­го около пра­виль­но­го тре­уголь­ни­ка со сто­ро­ной 10 см.

1)  целая часть: 33, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 Пи см2
2) 3 Пи см2
3) 9 Пи см2
4)  Пи см2
5) 10 Пи см2
6)  дробь: чис­ли­тель: 100 Пи , зна­ме­на­тель: 3 конец дроби см2
34.  
i

Hай­ди­те част­ное  дробь: чис­ли­тель: b_1, зна­ме­на­тель: q конец дроби для гео­мет­ри­че­ской про­грес­сии, у ко­то­рой сумма пер­во­го и тре­тье­го чле­нов равна 40, а сумма вто­ро­го и чет­вер­то­го равна 80.

1) 4
2) 6
3) 8
4) 12
35.  
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.

1) 12
2) 27
3) 3
4) 9
5) 24
6) 17