Каталог заданий.
Задания для подготовки
Версия для печати и копирования в MS Word
1
Тип Д41 A41 № 1950
i

Най­ди­те рас­сто­я­ние от точки A (1; −2; 3) до ко­ор­ди­нат­ной пря­мой Oy



2
Тип Д41 A41 № 1970
i

Най­ди­те угол между пря­мы­ми, за­дан­ны­ми па­ра­мет­ри­че­ски:

 си­сте­ма вы­ра­же­ний x = 2t плюс 1,y = t, z = минус t минус 1 конец си­сте­мы .

и

 си­сте­ма вы­ра­же­ний x = t плюс 2,y = минус 2t плюс 1, z = 1 конец си­сте­мы .



3
Тип Д41 A41 № 1990
i

Плос­кость за­да­на урав­не­ни­ем 3x плюс 2y минус z плюс 6 = 0. Рас­сто­я­ние от точки D (−1; 3; 2) до плос­ко­сти равно



4
Тип Д41 A41 № 2065
i

Дан тре­уголь­ник с вер­ши­на­ми A (−1; −1), B (3; 5), C (3; 3). Точка D — се­ре­ди­на сто­ро­ны CB, точка K — се­ре­ди­на сто­ро­ны АВ. Ко­ор­ди­на­ты век­то­ра \overlineAO плюс \overlineCO равны



5
Тип Д41 A41 № 2100
i

В па­рал­ле­ло­грам­ме ABCD дано: \vecAB = 2\veca минус \vecb, \vecAD = \veca плюс 3\vecb; |\veca| = 3; |\vecb| = 2 и  \angle левая круг­лая скоб­ка \veca; \vecb пра­вая круг­лая скоб­ка = 60 гра­ду­сов . Най­ди­те длины от­рез­ков AC и BD.



6
Тип Д41 A41 № 2135
i

Имеем A (2; 10) и В (8; 9) вер­ши­ны мень­ше­го ос­но­ва­ния тра­пе­ции. Точка пе­ре­се­че­ния диа­го­на­лей О (4; 8) делит каж­дую диа­го­наль в от­но­ше­нии 1 : 3. Най­ди­те ко­ор­ди­на­ты точки се­ре­ди­ны ниж­не­го ос­но­ва­ния тра­пе­ции.



7
Тип Д41 A41 № 2415
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 2 ; минус 1 ; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 0 ; 2 ; 1 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 1 ; 0 ; 0 пра­вая фи­гур­ная скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \vecp и \vecq, если \vecp=2 \veca минус \vecb и \vecq=\veca минус 3 \vecc.



8
Тип Д41 A41 № 2439
i

На оси абс­цисс най­ди­те точку, рав­но­уда­лен­ную от точек A (−1; 2) и B (−3; 4).



9
Тип Д41 A41 № 2614
i

Даны век­то­ры: \veca левая круг­лая скоб­ка 0; 5 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 7; минус 1 пра­вая круг­лая скоб­ка . Ко­си­нус угла между век­то­ра­ми  левая круг­лая скоб­ка \veca плюс \vecb пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка \veca минус \vecb пра­вая круг­лая скоб­ка равен?



10
Тип Д41 A41 № 3215
i

Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \veca плюс \vecb и \veca минус \vecb, если из­вест­но, что |\veca|=3 и  |\vecb|=2.



11
Тип Д41 A41 № 3216
i

Па­ра­мет­ри­че­ские урав­не­ния пря­мой, про­хо­дя­щей через точки A1(−2; 1; −3) и A2(4; 5; 6), имеют вид:



12
Тип Д41 A41 № 3252
i

Даны век­то­ры \veca левая круг­лая скоб­ка 3;2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 0; минус 1 пра­вая круг­лая скоб­ка . Най­ди­те аб­со­лют­ную ве­ли­чи­ну век­то­ра  левая круг­лая скоб­ка 5\veca плюс 10\vecb пра­вая круг­лая скоб­ка .



13
Тип Д41 A41 № 3425
i

Най­ди­те угол между век­то­ра­ми \veca=\overrightarrowA B и \vecb=\overrightarrowA C, если A(−1; 0), B(1; 2), C(2; 0).



14
Тип Д41 A41 № 3459
i

Най­ди­те ко­ор­ди­на­ты точки, сим­мет­рич­ной точке с ко­ор­ди­на­та­ми (4; −9) от­но­си­тель­но оси ор­ди­нат.



15
Тип Д41 A41 № 3644
i

Опре­де­ли­те вза­им­ное рас­по­ло­же­ние пря­мых d1 и d2, если они за­да­ны урав­не­ни­я­ми

 дробь: чис­ли­тель: x минус 2, зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: y плюс 1, зна­ме­на­тель: минус 3 конец дроби = дробь: чис­ли­тель: z , зна­ме­на­тель: минус 1 конец дроби и  дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: y , зна­ме­на­тель: минус 6 конец дроби = дробь: чис­ли­тель: z минус 1, зна­ме­на­тель: минус 2 конец дроби

со­от­вет­ствен­но.



16
Тип Д41 A41 № 3750
i

Най­ди­те длину от­рез­ка АВ, если A(2; 4), B(4; 6).



17
Тип Д41 A41 № 3813
i

При па­рал­лель­ном пе­ре­но­се точке A(−3; 4) пе­ре­хо­дит в точку A′(1; −1), а точка B(2; −3) в точку B′. Най­ди­те ко­ор­ди­на­ты точки B′.



18
Тип Д41 A41 № 3821
i

Гра­фи­ки ли­ней­ных урав­не­ний с двумя пе­ре­мен­ны­ми x плюс 2y=5 и 2x плюс y=4 пе­ре­се­ка­ют­ся в точке.



19
Тип Д41 A41 № 3823
i

Точки A(−2; 5) и B (4; 17) яв­ля­ют­ся кон­ца­ми от­рез­ка AB. Точка N при­над­ле­жит от­рез­ку АВ, при­чем рас­сто­я­ние от нее до точки А в 2 раза боль­ше, чем до точки B. Опре­де­ли­те ко­ор­ди­на­ты точки N.



20
Тип Д41 A41 № 3858
i

Две окруж­но­сти имеют общий центр. На боль­шей окруж­но­сти за­дан­ной урав­не­ни­ем левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка в квад­ра­те =100 от­ме­че­ны точки A(9; 13) и B(3; −5) так, что хорда AB ка­са­ет­ся мень­шей окруж­но­сти. Най­ди­те квад­рат ра­ди­у­са мень­шей окруж­но­сти.


Завершить работу, свериться с ответами, увидеть решения.