Заголовок: Демонстрационная версия ЕНТ−2022 по математике. Вариант 2.
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 4

Демонстрационная версия ЕНТ−2022 по математике. Вариант 2.

1.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: 53 в квад­ра­те минус 27 в квад­ра­те , зна­ме­на­тель: 79 в квад­ра­те минус 51 в квад­ра­те конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби
5)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби
2.  
i

Ко­рень урав­не­ния y = y', при y = x в квад­ра­те плюс 1 равен?

1) 3
2) 4
3) 2
4) 5
5) 1
3.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс xy минус 2 = 0,y минус 3x = 7. конец си­сте­мы .

1) (−1; 2); (0,75; 7,75)
2) (2; 1); (0,25; −7,75)
3) (−2; −1); (−0,25; 7,75)
4) (−2; 1); (0,25; 7,75)
5) (2; 1); (−0,25; −7,75)
4.  
i

Cколь­ко воды не­об­хо­ди­мо до­ба­вить к 60 кг 15% рас­тво­ра соли, чтобы cодер­жа­ние соли в по­след­ней со­ста­ви­ло 5%?

1) 180 кг
2) 150 кг
3) 120 кг
4) 140 кг
5) 100 кг
5.  
i

Hай­ди­те S, где S — сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 81; ...

1) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
3) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
4) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби
5) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
6.  
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.

1) 0
2) 1
3) −1
4) 2
5) −5
7.  
i

Вы­пол­ни­те дей­ствия: 0,45:0,09 плюс 36:1,2 минус 18,63.

1) 14,37
2) 16,37
3) 8,37
4) 25,37
5) 6,37
8.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка = 4,x минус y = 4. конец си­сте­мы .

1) (13; 9)
2) (14; 10)
3) (12; 8)
4) (13; −9)
5) (16; −3)
9.  
i

Hай­ди­те точку ми­ни­му­ма функ­ции:  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 8x плюс 17 конец ар­гу­мен­та .

1) x = минус 8
2) x = 8
3) x = минус 4
4) x = минус 2
5) x = 4
10.  
i

На ри­сун­ке O_1O_2 = 28. Ра­ди­у­сы окруж­но­стей O_1B = 14 и O_2A = 20. Длина от­рез­ка AB равна

1) 6
2) 8
3) 9
4) 7
5) 10
11.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1,5 пра­вая круг­лая скоб­ка .

1) 1
2) x в квад­ра­те
3) x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
5) x
12.  
i

Пусть ABCD — квад­рат, BM \perp левая круг­лая скоб­ка ABC пра­вая круг­лая скоб­ка . Най­ди­те длину от­рез­ка DM, если AB = 2 ко­рень из 3  см, а BM = 5 см.

1) 6 ко­рень из 2 см
2) 5 ко­рень из 3 см
3) 7 см
4) 6 см
5) 5 см
13.  
i

Cумма семи пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии 48; 24; ... равна?

1) 97,75
2) 95,25
3) 63,25
4) 94,50
5) 31,75
14.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: x минус 4 конец дроби боль­ше 1, дробь: чис­ли­тель: x минус 5, зна­ме­на­тель: 2x плюс 4 конец дроби мень­ше или равно 2. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 ; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 2; 4 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка
15.  
i

Pешите не­ра­вен­ство: 4 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка плюс 5x боль­ше или равно 3x.

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка
16.  
i

B 450 кг руды со­дер­жит­ся 67,5 кг меди. Сколь­ко про­цен­тов меди со­дер­жит­ся в руде?

1) 23%
2) 15%
3) 25%
4) 12%
5) 14%
17.  
i

Вы­чис­ли­те:  левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 7 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .

1) 32
2) 30
3) 18
4) 16
5) 28
18.  
i

Ука­жи­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0.

1) 1; 3
2) 0; 2
3) 3; 2
4) 2; 1
5) 0; 1
19.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни x плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 2,2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка мень­ше или равно 64 умно­жить на 2 в сте­пе­ни x . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус 2; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 3 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 3; 3 пра­вая круг­лая скоб­ка
20.  
i

В па­рал­ле­ло­грам­ме ABCD дано: \vecAB = 2\veca минус \vecb, \vecAD = \veca плюс 3\vecb; |\veca| = 3; |\vecb| = 2 и  \angle левая круг­лая скоб­ка \veca; \vecb пра­вая круг­лая скоб­ка = 60 гра­ду­сов . Най­ди­те длины от­рез­ков AC и BD.

1) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 133 конец ар­гу­мен­та ; BD = 7
2) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 133 конец ар­гу­мен­та ; BD = ко­рень из 7
3) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 105 конец ар­гу­мен­та ; BD = ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
4) AC = 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та ; BD = ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та
5) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 105 конец ар­гу­мен­та ; BD = ко­рень из 7

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность того, что про­из­ве­де­ние чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет за­кан­чи­вать­ся циф­рой 0?

1) 0,7
2) 0,6
3) 0,1
4) 0,3
5) 0,5
22.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что сумма чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, мень­ше 10?

1) 0,9
2) 0,1
3) 0,3
4) 0,6
5) 0,5
23.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет крат­ным 2?

1) 0,1
2) 0,3
3) 0,9
4) 0,5
5) 0,6
24.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность того, что Марат смо­жет по­стро­ить пря­мо­уголь­ный тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ных на вы­бран­ных им кар­точ­ках?

1) 0,6
2) 0,1
3) 0,5
4) 0,3
5) 0,7
25.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что Марат смо­жет по­стро­ить тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на вы­тя­ну­тых им кар­точ­ках?

1) 0,7
2) 0,3
3) 0,1
4) 0,6
5) 0,5
26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та | плюс |2 x y| пра­вая круг­лая скоб­ка при x = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
3) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби конец ар­гу­мен­та
4) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби конец ар­гу­мен­та
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
6) \pm дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
7)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
8)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
27.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y = 4,xy = минус 3. конец си­сте­мы .

1) (−1; 3)
2) (1; −1)
3) (3; 1)
4) (1; 3)
5) (1; −3)
6) (3; −1)
7) (3; −3)
8) (−1; −3)
28.  
i

Два ме­тал­ла в спла­ве на­хо­дят­ся в от­но­ше­нии 2 : 3. Опре­де­ли­те их про­цент­ное со­дер­жа­ние в спла­ве.

1) 40%
2) 10%
3) 60%
4) 30%
5) 20%
6) 90%
7) 80%
8) 70%
29.  
i

Пло­щадь круга, впи­сан­но­го в пра­виль­ный ше­сти­уголь­ник, равна 300π см2. Ка­ко­му про­ме­жут­ку при­над­ле­жит сто­ро­на ше­сти­уголь­ни­ка?

1)  левая квад­рат­ная скоб­ка 30; 70 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 25; 30 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 20; 70 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 10; 20 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 50; 70 пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 50; 70 пра­вая круг­лая скоб­ка
7)  левая квад­рат­ная скоб­ка 60; 70 пра­вая круг­лая скоб­ка
8)  левая квад­рат­ная скоб­ка 20; 40 пра­вая круг­лая скоб­ка
30.  
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка мень­ше или равно 2,x в квад­ра­те минус 9 боль­ше или равно 0. конец си­сте­мы . Най­ди­те наи­боль­шее ре­ше­ние си­сте­мы не­ра­венств.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 36 конец ар­гу­мен­та
2) нет пра­виль­но­го от­ве­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та
4) 7
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
7) 8
8) 6
31.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов, ука­жи­те вер­ное для функ­ций f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1 и g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = \srqrt x.

1) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся ли­ней­ной функ­ци­ей функ­ци­ей
2) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =2 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 1
3) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 x конец ар­гу­мен­та плюс 1
4) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся убы­ва­ю­щей функ­ци­ей
5) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся ли­ней­ной функ­ци­ей
6) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка не яв­ля­ет­ся ли­ней­ной функ­ци­ей
7) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся воз­рас­та­ю­щей функ­ци­ей
8) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 x плюс 1 конец ар­гу­мен­та
32.  
i

Eсли в ариф­ме­ти­че­ской про­грес­сии a_6 плюс a_9 плюс a_12 плюс a_15 = 20, то S20 равна?

1) 25
2) 10 в квад­ра­те
3) 150
4) 15 умно­жить на 10
5) 200
6) 2 умно­жить на 10 в квад­ра­те
7) 100
8) 5 в квад­ра­те
33.  
i

Pешите урав­не­ние:  синус 2x плюс 5 левая круг­лая скоб­ка синус x плюс ко­си­нус x пра­вая круг­лая скоб­ка = минус 1.

1)  минус дробь: чис­ли­тель: 1 плюс 4 n, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби , n при­над­ле­жит Z
3)  дробь: чис­ли­тель: минус 1 плюс 4 n, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
4)  дробь: чис­ли­тель: 4 n плюс 1, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
5)  дробь: чис­ли­тель: 1 минус 4 n, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
6)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n, n при­над­ле­жит Z
7)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n, n при­над­ле­жит Z
8)  дробь: чис­ли­тель: 4 n минус 1, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
34.  
i

Oпре­де­ли­те ра­ди­ус окруж­но­сти впи­сан­ной в ромб.

1) 2
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 2,5 конец ар­гу­мен­та
3)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 1,5 конец ар­гу­мен­та
5) 1,25
6)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
7)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби
8) 1,5
35.  
i

При дви­же­нии тела по пря­мой рас­сто­я­ние s (в мет­рах) из­ме­ня­ет­ся по за­ко­ну s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: t в квад­ра­те , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: t конец ар­гу­мен­та конец дроби (t — время из­ме­ря­ет­ся в се­кун­дах). Най­ди­те ско­рость тела через 4 с после на­ча­ла дви­же­ния.

1)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 м/с
2) 4,325 м/с
3)  дробь: чис­ли­тель: 33, зна­ме­на­тель: 8 конец дроби м/с
4)  целая часть: 4, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 8 м/с
5) 4,025 м/с
6) 4,125 м/с
7)  целая часть: 4, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 8 м/с
8) 4,25 м/с