Каталог заданий.
Задания для подготовки

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 38 № 2077
i

Eсли в ариф­ме­ти­че­ской про­грес­сии {an}, a7 = 21, S7 = 105, то най­ди­те d, a1, a5.

1) 13
2) 11
3) 9
4) 3
5) 2
6) 17
Источник: Де­мон­стра­ци­он­ная вер­сия ЕНТ по ма­те­ма­ти­ке 2022 года, ва­ри­ант 1. От­ре­дак­ти­ро­ва­но ре­дак­ци­ей Решу ЕНТ в фор­мат ак­ту­аль­ной де­мо­вер­сии

2
Тип 38 № 2112
i

Eсли в ариф­ме­ти­че­ской про­грес­сии a_6 плюс a_9 плюс a_12 плюс a_15 = 20, то S20 равна?

1) 10 в квад­ра­те
2) 10 в кубе
3) 150
4) 15 умно­жить на 10
5) 200
6) 100
Источник: Де­мон­стра­ци­он­ная вер­сия ЕНТ по ма­те­ма­ти­ке 2022 года, ва­ри­ант 2. От­ре­дак­ти­ро­ва­но ре­дак­ци­ей Решу ЕНТ в фор­мат ак­ту­аль­ной де­мо­вер­сии

3
Тип 38 № 2147
i

Cумма трех дан­ных чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 15. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 1, 4 и 19, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Дан­ные три числа равны:

1) 5
2) 8
3) 11
4) 14
5) 2
6) 7
Источник: Де­мон­стра­ци­он­ная вер­сия ЕНТ по ма­те­ма­ти­ке 2022 года, ва­ри­ант 3. От­ре­дак­ти­ро­ва­но ре­дак­ци­ей Решу ЕНТ в фор­мат ак­ту­аль­ной де­мо­вер­сии

4
Тип 38 № 3234
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна

1) −65
2) 65
3)  минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
4) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
5) 13 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
Источник: ЕНТ по ма­те­ма­ти­ке 2021 года, ва­ри­ант 1. От­ре­дак­ти­ро­ва­но ре­дак­ци­ей Решу ЕНТ в фор­мат ак­ту­аль­ной де­мо­вер­сии

5
Тип 38 № 3636
i

Най­ди­те наи­боль­ший член чис­ло­вой по­сле­до­ва­тель­но­сти, за­дан­ной фор­му­лой об­ще­го члена  C_n= минус 0,5 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка n пра­вая круг­лая скоб­ка .

1) 3
2) 1
3) 1,5
4) −1
5) −1,5
6) −3

Пройти тестирование по этим заданиям