Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания для подготовки
1.  
i

Ука­жи­те вер­ные ра­вен­ства.

1)  левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка в сте­пе­ни 5 = левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка
2) 2x в сте­пе­ни 4 = 2 умно­жить на x умно­жить на x умно­жить на x умно­жить на x
3)  левая круг­лая скоб­ка ay пра­вая круг­лая скоб­ка в сте­пе­ни 4 = a умно­жить на a умно­жить на a умно­жить на a умно­жить на a умно­жить на y умно­жить на y умно­жить на y умно­жить на y
4) n в сте­пе­ни 5 = n умно­жить на n умно­жить на n умно­жить на n умно­жить на n
5)  левая круг­лая скоб­ка my пра­вая круг­лая скоб­ка в кубе = m умно­жить на y умно­жить на y умно­жить на y
6) m в кубе = m плюс m плюс m
2.  
i

После при­ве­де­ния к од­но­чле­нам стан­дарт­но­го вида най­ди­те те, у ко­то­рые сте­пень од­но­чле­на равна 10.

1)  минус 9 x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка y в кубе x в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка y в квад­ра­те
2) 2,4 x в квад­ра­те y в кубе умно­жить на 7 x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка y в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка
3) 2 x в квад­ра­те y в кубе умно­жить на 2,5 x в квад­ра­те y в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка
4)  минус 0,4 x левая круг­лая скоб­ка x y в кубе пра­вая круг­лая скоб­ка в квад­ра­те
5)  минус 3 x в сте­пе­ни левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка y в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка умно­жить на 2,5 x в квад­ра­те y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
6)  минус 0,4 x y в кубе умно­жить на левая круг­лая скоб­ка x в квад­ра­те y пра­вая круг­лая скоб­ка в квад­ра­те
3.  
i

Из­бавь­тесь от ир­ра­ци­о­наль­но­сти в зна­ме­на­те­ле дроби:  дробь: чис­ли­тель: x минус y, зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x y конец ар­гу­мен­та плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: y в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка конец дроби .

1)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x y конец ар­гу­мен­та плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: y в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
2)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: y в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
3)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: y в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
4) x в кубе минус y в кубе
5)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та
6) x в кубе плюс y в кубе
4.  
i

Вы­бе­ри­те из пе­ре­чис­лен­ных мно­го­чле­нов мно­го­член, за­пи­сан­ный в стан­дарт­ном виде.

1) 8 a b в квад­ра­те минус a b в квад­ра­те плюс a в квад­ра­те b
2) 0,25 m плюс 2 m n минус m n
3) 7 x плюс 8 x в квад­ра­те минус b x в квад­ра­те
4) 3 a в квад­ра­те плюс 6 a b минус 4 a в квад­ра­те плюс a b
5) d m в кубе плюс m в кубе n плюс d n в кубе
6) 4 x в квад­ра­те плюс 55 x y z плюс 4 y в квад­ра­те
5.  
i

Най­ди­те А, В, С, чтобы ра­вен­ство

x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 3 x в кубе минус 15 x в квад­ра­те минус 8 x плюс 9= левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в кубе плюс A x в квад­ра­те плюс B x плюс C пра­вая круг­лая скоб­ка

было вер­ное.

1) 2
2) 9
3) −8
4) −17
5) 15
6) −9
6.  
i

Зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x в квад­ра­те минус 2x, зна­ме­на­тель: 4x в квад­ра­те конец дроби умно­жить на дробь: чис­ли­тель: 2x, зна­ме­на­тель: 2 минус x конец дроби равно

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) 5 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
3) −0,5
4) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
7.  
i

Сумма двух по­сле­до­ва­тель­ных на­ту­раль­ных чисел, за­дан­ных вида 3n, равна 21, а их про­из­ве­де­ние 108. Ука­жи­те дан­ные числа.

1) 10
2) 7
3) 9
4) 9
5) 12
6) 8
8.  
i

Рас­крой­те скоб­ки и при­ве­ди­те по­доб­ные сла­га­е­мые  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби левая круг­лая скоб­ка минус 14 x плюс 7 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 11 конец дроби левая круг­лая скоб­ка 44 x минус 11 пра­вая круг­лая скоб­ка .

1) 3 минус 28 x
2)  минус 16 x плюс 7
3)  минус 24 x плюс 7
4)  минус 28 x плюс 3
5) 7 минус 24 x
6) 7
9.  
i

Упро­сти­те вы­ра­же­ние

 4 левая круг­лая скоб­ка 3 a минус 2,5 b пра­вая круг­лая скоб­ка минус 11 левая круг­лая скоб­ка a минус 2 b пра­вая круг­лая скоб­ка минус 65 a b минус 13 левая круг­лая скоб­ка b минус 5 a b пра­вая круг­лая скоб­ка

и най­ди­те его зна­че­ние при a= минус 1 и b=2. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния.

1) (0; 0,0615]
2) [−150; 0)
3)  левая квад­рат­ная скоб­ка 0 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4) (−8; 0)
5) [−400; −10]
6) (−10; 0]
10.  
i

Вы­не­си­те мно­жи­те­ли из-под знака корня в вы­ра­же­нии  минус 3 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,0256 x в сте­пе­ни левая круг­лая скоб­ка 12 конец ар­гу­мен­та y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , при  x мень­ше 0 и  y боль­ше 0.

1)  минус 1,6 x в квад­ра­те y
2)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5 x ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 5 конец дроби x в кубе y
4) 12 x ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та
5)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5 x в кубе y
6) 1,2 x в кубе y
11.  
i

Вы­чис­ли­те \absx в квад­ра­те плюс y в квад­ра­те минус 2xy при x = −3 и y = 2.

1) 20
2) 30
3) 36
4) 25
5) 48
6) 37
12.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус 2 a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: a минус 2 a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка конец дроби .

1) a в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
2) a в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3) a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: минус 3, зна­ме­на­тель: 4 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка конец дроби
13.  
i

Зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка a в квад­ра­те минус b в квад­ра­те пра­вая круг­лая скоб­ка минус a минус b при a  =  1,5; b  =  0,5 равно

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
2) 0
3) 0,25
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 25 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 25 конец дроби
6) 2
14.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов вы­бе­ри­те те, ко­то­рые равны остат­ку от де­ле­ния мно­го­чле­на x2 − 3x + 5 на дву­член x − 1.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 2
3) 1
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
6) 3
15.  
i

Упро­сти­те вы­ра­же­ние (−x6y2)2 − 66x12y4 + 4(−2x3y)4 и най­ди­те его зна­че­ние при x  =  −1, y  =  2. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние дан­но­го вы­ра­же­ния.

1)  левая квад­рат­ная скоб­ка минус 150; 0 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 8; 0 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 400; минус 10 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 10; 0 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
16.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния |a минус 6| минус |a| при  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби мень­ше a мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби имеет вид:

1) −6
2) 2a + 6
3) −2a − 6
4) 6 − 2a
5) 6
6) 2a − 6
17.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния |a минус 7| минус |a| при  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби мень­ше a мень­ше дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби имеет вид:

1) −2a − 7
2) 7 − 2a
3) 2a + 7
4) 7
5) −7
6) 2a − 7
18.  
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: 16 минус левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 9x плюс 14 конец дроби .

1)  дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: x плюс 2 конец дроби
2)  дробь: чис­ли­тель: 1 минус x, зна­ме­на­тель: x минус 2 конец дроби
3)  дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: x минус 2 конец дроби
4)  дробь: чис­ли­тель: 1 минус x, зна­ме­на­тель: x плюс 2 конец дроби
5)  дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: x плюс 2 конец дроби
6)  дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: минус x минус 2 конец дроби
19.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 22x плюс 121, зна­ме­на­тель: x в квад­ра­те минус 11x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 121, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 11 конец дроби
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
3)  дробь: чис­ли­тель: x минус 11, зна­ме­на­тель: x плюс 11 конец дроби
4)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 11 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 11 конец дроби
6)  дробь: чис­ли­тель: x плюс 11, зна­ме­на­тель: x в квад­ра­те конец дроби
20.  
i

Вы­чис­ли­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 9a в квад­ра­те минус 24a плюс 16 конец ар­гу­мен­та минус ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27a в кубе конец ар­гу­мен­та при a=0,7.

1) 0,5
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
3) 5
4) 0
5) −0,2
6) −5