Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания для подготовки
1.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 125 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та конец дроби .

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 1,5
3) −1,5
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 1,2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та | плюс |2 x y| пра­вая круг­лая скоб­ка при x = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
3) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби конец ар­гу­мен­та
4) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби конец ар­гу­мен­та
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
6) \pm дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
3.  
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).

1) 33
2) 42
3) 32
4) 40
5) 34
6) 36
4.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 353 в квад­ра­те минус 272 в квад­ра­те конец ар­гу­мен­та крат­но чис­лам?

1) 5
2) 4
3) 8
4) 6
5) 11
6) 3
5.  
i

Опре­де­ли­те, каким про­ме­жут­кам при­над­ле­жит зна­че­ние вы­ра­же­ния 2 ко­рень из x плюс 1, x = ло­га­рифм по ос­но­ва­нию 5 625.

1) (1; 7)
2) (−5; 1)
3) (1; 3)
4) (4; 10)
5) (3; 8)
6) (0; 4)
6.  
i

Упро­сти­те: | ко­рень из 7 плюс ко­рень из 5 минус 4| плюс | ко­рень из 7 плюс ко­рень из 5 минус 5|.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 1
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
3) 1
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
5) 2
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
7.  
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка равно

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус 0,5
4) 0,2
5)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6) 0,5
8.  
i

Oдно из двух на­ту­раль­ных чисел боль­ше дру­го­го на 13. Най­ди­те эти числа, если их про­из­ве­де­ние равно 48.

1) 24
2) 6
3) 16
4) 8
5) 1
6) 3
9.  
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .

1) 1250
2) 1372
3) 1260
4) 25 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  29 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
6) 1360
10.  
i

Ука­жи­те про­ме­жут­ки, со­дер­жа­щие зна­че­ние вы­ра­же­ния 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) (2; 2,9)
2) (2,7; 2,8)
3) (1,5; 2)
4) (2,5; 2,6)
5) (1,2; 1,6)
6) (2,5; 2,8)
11.  
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов ука­жи­те те, 35% ко­то­рых яв­ля­ют­ся целым чис­лом.

1) 50
2) 60
3) 40
4) 30
5) 90
6) 20
12.  
i

Pас­сто­я­ние на плане между двумя точ­ка­ми 2,3 см. Вы­чис­ли­те со­от­вет­ству­ю­щее рас­сто­я­ние в дей­стви­тель­но­сти, если

Mас­штаб плана равен 1 : 1 000 000.

1) 230 км
2) 23 км
3) 230 км
4) 0,23 км
5) 23 м
6) 23 000 м
13.  
i

Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит при­бли­жен­ное зна­че­ние ве­ли­чи­ны угла 30°, вы­ра­жен­но­го в ра­ди­а­нах.

1) [0; 1)
2) (100; 1000]
3) (0,75; 7]
4) (0; 0,0615]
5)  левая круг­лая скоб­ка −0,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
14.  
i

Рис со­дер­жит 75% крах­ма­ла, а яч­мень — 60% крах­ма­ла. Сколь­ко надо взять яч­ме­ня, чтобы в нем со­дер­жа­лось столь­ко же крах­ма­ла, сколь­ко его со­дер­жит­ся в 5 кг риса. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит пра­виль­ный ответ.

1) [5; 5,5)
2) [6; 6,25)
3) (5; 6,5]
4) [6,5; 7]
5) (6; 6,25]
6) (6,75; 7]
15.  
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых чис­лен­но равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 синус 60 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
2)  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
3)  тан­генс 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
4) 2 тан­генс 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
5) \ctg 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
6)  минус \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
16.  
i

Вы­чис­ли­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: \abs минус 2,5 плюс 4,6, зна­ме­на­тель: минус 1,6 плюс \abs2 умно­жить на 3,5 минус \abs минус 4 конец дроби .

1) 1,7
2) 1,5
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
5) 1,5
6)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
17.  
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.

1) если S — это 40% числа k, то  k =0,125
2) если S — это 50% числа k, то  k =0,125
3) 40% от числа S равны 0,2
4) если S — это 0,2 числа n, то  n =2,5
5) 20% числа S мень­ше 40% числа S на 0,1
6) 40% от числа S равны 0,02
18.  
i

Упро­сти­те  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 7 ко­рень из: на­ча­ло ар­гу­мен­та: 7 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби
2)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 7 конец дроби
3) 7 ко­рень из 7
4)  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка
5)  минус \farc 78
6)  минус ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка
19.  
i

Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: |a плюс 2|, зна­ме­на­тель: a минус 1 конец дроби , при a  =  −5.

1)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2) −0,5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) −0,2
6) 0,5
20.  
i

Из пред­ло­жен­ных ва­ри­ан­тов под­бе­ри­те на­ту­раль­ное число х так, чтобы зна­че­ние суммы 758 + х де­ли­лось на 9 без остат­ка.

1) 6
2) 7
3) 16
4) 5
5) 15
6) 14
21.  
i

Kоли­че­ство де­ли­те­лей числа 24 равно

1) 22
2) 4
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та
4) 8
5) 12
6) 23
22.  
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:

1) 16 ко­рень из 3
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 195 конец ар­гу­мен­та
3) 9 ко­рень из 3
4)  дробь: чис­ли­тель: 65 ко­рень из: на­ча­ло ар­гу­мен­та: 195 конец ар­гу­мен­та , зна­ме­на­тель: 8 конец дроби
5)  дробь: чис­ли­тель: 6 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 243 конец ар­гу­мен­та
23.  
i

Зна­че­ние вы­ра­же­ния 4 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 176 конец ар­гу­мен­та равно:

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 188 конец ар­гу­мен­та
2)  дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
3) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
4) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
5)  дробь: чис­ли­тель: 17 ко­рень из: на­ча­ло ар­гу­мен­та: 188 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
6) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
24.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:

1) 2 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2
4) 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 12 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 3 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
25.  
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та 8 пра­вая круг­лая скоб­ка .

1) 1
2) 0,5
3) 0
4) −0,5
5) −1
6)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
26.  
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та .

1) −1
2) 0
3) 0,5
4) 1
5) 2
6) 3
27.  
i

Упро­сти­те вы­ра­же­ние 5 левая круг­лая скоб­ка 2m плюс 5n пра­вая круг­лая скоб­ка минус 3 левая круг­лая скоб­ка 5n минус 3m пра­вая круг­лая скоб­ка .

1) 19m минус 10n
2) 18m плюс 10n
3) 19m плюс 10n
4) 18m минус 11n
5) 18m плюс 11n
6) 19m плюс 11n
28.  
i

Упро­сти­те вы­ра­же­ние 7 левая круг­лая скоб­ка 3m минус 2n пра­вая круг­лая скоб­ка минус 4 левая круг­лая скоб­ка 2,5n плюс 4m пра­вая круг­лая скоб­ка .

1) 24n плюс 5m
2) 18n плюс 8m
3) 18n минус 8m
4) 19m минус 10n
5)  минус 24n минус 5m
6) 24n минус 7m

Вы­бе­ри­те все про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния 2 левая круг­лая скоб­ка 1,8x плюс 2 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 0,9 минус 3x пра­вая круг­лая скоб­ка минус 3,7 при x  =  1.

1) (1; 6)
2) (3; 6]
3) [7; 9)
4) [7; 11]
5) (2; 10)
6) [4; 7]

Вы­бе­ри­те все про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния 4 левая круг­лая скоб­ка 1,5x плюс 1 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 2,1 минус 3x пра­вая круг­лая скоб­ка минус 0,9 при x  =  1.

1) [5; 7)
2) [1; 4)
3) (8; 10]
4) [7; 8]
5) (10; 13)
6) [9; 11)
31.  
i

Bыбе­ри­те все про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  3 левая круг­лая скоб­ка 2,1x плюс 1 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 1,5 минус 4x пра­вая круг­лая скоб­ка минус 6,2 при  x = 1.

1)  левая квад­рат­ная скоб­ка 6; 10 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 6; 9 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 5; 9 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 2; 7 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 4; 7 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус 1; 4 пра­вая круг­лая скоб­ка