1. Дана система уравнений

$$\begin{cases} 2^{x} \cdot 4^{y} = 32, \\ \log_{3}(x - y) = \log_{3} 2, \end{cases}$$

где (x; y) — решение данной системы. Сумма (x + y) принадлежит промежутку?

- 1) (5; 12) 2) (5; 7) 3) (0; 10) 4) $(-\infty; 2)$ 5) (-1; 6) 6) (0; 8) 7) (10; 24) 8) (-8; 4)
- **2.** Укажите обратную функцию для функции: $y = 5^{x+4} 1$.

1) $y = \log_4(x+1) + 5$ 2) $y = \log_5(x-1) + 4$ 3) $y = \log_5(x+1) - 4$ 4) $y = \log_5(x+1) + 5$ 5) $y = \log_4(x-1) + 5$ 6) $y = \log_4(x+1) - 5$ 7) $y = \log_5(x-1) - 4$ 8) $y = \log_4(x-1) - 5$

3. Из ниже перечисленных ответов, укажите верное для функций f(x) = 2x + 1 и g(x) = x.

1) g(f(x)) является линейной функцией функцией 2) $f(g(x)) = 2\sqrt{x} - 1$ 3) $g(f(x)) = \sqrt{2x} + 1$ 4) f(g(x)) является убывающей функцией 5) f(g(x)) является линейной функцией 6) g(f(x)) не является линейной функцией 7) g(f(x)) является возрастающей функцией 8) $g(f(x)) = \sqrt{2x+1}$

4. Найдите наименьшее значение функции: $y = x^2 - 4x + 3$.

1) 4 2) 5 3) 3 4) 1 5) 6 6) 7 7) 2 8) -1

5. Найдите значение выражения $\sqrt{x \cdot y}$, где (x; y) — решение системы уравнений: $\begin{cases} x - y = 24, \\ \sqrt{x} + \sqrt{y} = 6. \end{cases}$

1) $\sqrt{25}$ 2) 6 3) 7 4) $\sqrt{49}$ 5) $\sqrt{8^2}$ 6) 5 7) $\sqrt{36}$ 8) $\sqrt{5^2}$ 6. Найдите промежуток в котором заключена сумма (x+y), где (x;y) — решение системы

уравнений: $\begin{cases} 4^{x+y} = 128, \\ 5^{3x-2y-3} = 1. \end{cases}$

1) [-4;4] 2) $\left(-3\frac{1}{2};\frac{1}{2}\right)$ 3) (-3;-0,5) 4) [-1;1] 5) $\left(-\infty;\frac{1}{2}\right]$ 6) (-3,5;3,5) 7) $[0;+\infty)$ 8) $(-\infty;3,5]$

7. Найдите числовой промежуток, в котором расположено значение выражения $\sqrt{x \cdot y}$, где (x;y) — решение системы уравнений: $\begin{cases} x = y, \\ \sqrt{x} + \sqrt{y} = 6. \end{cases}$

1) (-81;4) 2) [0;9) 3) $(-\infty;9)$ 4) (-9;9) 5) $(-\infty;81)$ 6) (-4;9) 7) $[-9;\cdot9]$ 8) $(9;+\infty)$

8. Какие из перечисленных значений выражений $x+y, \ x-y$ и xy верны, если x и y являются решением системы уравнений $\begin{cases} 5^{\log_5(3x)} = 3^{\log_3(4y+7)}, \\ x+2y=4 \end{cases}$

1)
$$xy = -0.5$$
 2) $xy = 1.5$ 3) $x + y = 2.5$ 4) $x - y = -3.5$ 5) $x - y = 2.5$ 6) $x + y = -1.5$ 7) $xy = 2$ 8) $x + y = 3.5$

9. Выполните действия $(3\sqrt{175} - 5\sqrt{28} + 3\sqrt{63})^2 - 40 \cdot \sqrt[3]{0,027}$.

- 1) 1250 2) 1372
- 3) 1260

- 4) $25\sqrt{3}$ 5) $29\sqrt{7}$ 6) 1360 7) $100\sqrt{7}$

10. Из нижеперечисленных пар чисел, выберите те, которые являются решением системы: tgx + tgy = 2, $\int \mathsf{tg} \, x - \mathsf{tg} \, y = 0.$

1)
$$\left(\frac{\pi}{6}; \frac{2\pi}{3}\right)$$
 2) $\left(\frac{\pi}{4}; \frac{\pi}{4}\right)$ 3) $\left(\frac{\pi}{6}; \frac{\pi}{3}\right)$ 4) $\left(\frac{\pi}{4}; \frac{3\pi}{4}\right)$ 5) $\left(\frac{5\pi}{6}; \frac{\pi}{4}\right)$ 6) $\left(\frac{3\pi}{4}; \frac{\pi}{4}\right)$ 7) $\left(\frac{\pi}{4}; \frac{5\pi}{4}\right)$ 8) $\left(\frac{5\pi}{4}; \frac{\pi}{4}\right)$

11. Из нижеперечисленных пар чисел, выберите те, которые являются решением системы уравнений:

$$\begin{cases} \sin x + \cos y = 1, \\ \sin x \cdot \cos y = \frac{1}{4}. \end{cases}$$
1)
$$\left\{ \left(\frac{\pi}{6}; \frac{\pi}{6} \right) \right\} \quad \text{2)} \left\{ \left(\frac{5\pi}{6}; \frac{\pi}{3} \right) \right\} \quad \text{3)} \left\{ \left(\frac{5\pi}{6}; \frac{\pi}{6} \right) \right\} \quad \text{4)} \left\{ \left(\frac{\pi}{4}; \frac{\pi}{4} \right) \right\}$$
5)
$$\left\{ \left(\frac{5\pi}{6}; \frac{5\pi}{6} \right) \right\} \quad \text{6)} \left\{ \left(\frac{\pi}{4}; \frac{\pi}{6} \right) \right\} \quad \text{7)} \left\{ \left(\frac{\pi}{3}; \frac{\pi}{6} \right) \right\} \quad \text{8)} \left\{ \left(\frac{\pi}{3}; \frac{\pi}{3} \right) \right\}$$

12. Пусть $(x_n; y_n)$ — решения системы уравнений:

$$\begin{cases} x^2 + xy = 15, \\ y^2 + xy = 10. \end{cases}$$

Найдите линейную функцию угловым коэффициентом, которой является значение выражения $x_1 \cdot x_2 + y_1 \cdot y_2$.

1)
$$y = -13 + x$$
 2) $y = -3 + 13x$ 3) $y = -5 + 13x$ 4) $y = 5 + 13x$
5) $y = 2 - 13x$ 6) $y = -2(6, 5x + 2)$ 7) $y = -13x$ 8) $y = 2 + 13x$

13. Какому промежутку принадлежит произведение $x \cdot y$, где (x; y) — решение системы уравнений:

$$\begin{cases} \log_5(x^2+y^2)=2,\\ \log_2x-2=\log_23-\log_2y. \end{cases}$$
 1) [3; 15] 2) (0; 13) 3) [-4; 1] 4) (2; 17) 5) [-4; 10] 6) [1; 5] 7) (2; 12) 8) (4; 9)

14. Пусть (x; y) решение системы уравнений $\begin{cases} 2^{x-3y} = 16, \\ 2x + y = 5. \end{cases}$ Найдите значения выражений

$$49 \cdot x \cdot y$$
 и $7(x+y)$.

1) -37 2) -22 3) 57 4) -57 5) -16 6) 16 7) 37 8) 22

- **15.** Найдите отношение $\frac{x}{y}$, где (x; y) решение системы уравнений: $\begin{cases} \lg(x y) = 2, \\ \lg x = \lg 3 + \lg y. \end{cases}$
 - 1) 3^0 2) $\frac{1}{3}$ 3) $\left(\frac{1}{3}\right)^{-1}$ 4) 0,25 5) 2 6) 1 7) 3 8) 0,5
- **16.** Вынесите множители из-под знака корня в выражении $-3\sqrt[4]{0,0256x^{12}y^4}$, при x<0 и y>0.
 - 1) $-1,6x^2y$ 2) $-1\frac{1}{5}x\sqrt{y}$ 3) $\frac{6}{5}x^3y$ 4) $12x\sqrt{y}$ 5) $1\frac{1}{5}x^3y$ 6) $16x^3y\sqrt{y}$ 7) $1,2x^3y$ 8) $-1,2x^3y$
- **17.** Найдите числовые промежутки, которым принадлежит значение выражения $\left(\frac{1}{x}+\frac{1}{y}\right)$, где (x;y) решение системы уравнений $\begin{cases} x-y=4,\\ 3^x\cdot 3^y=27. \end{cases}$
 - 1) $(2; +\infty)$ 2) $\left(\frac{1}{2}; \frac{7}{2}\right)$ 3) (-3; 3) 4) (-0, 5; 2) 5) (-1; 2) 6) $(-\infty; 2]$ 7) [-2; 2] 8) $(-\infty; -2)$
 - **18.** Выбери промежутки, в которые входит область определения функции $y = \frac{\sqrt{36x+9}}{x-1}$.
 - 1) $(-\infty; 6000]$ 2) $[-150; +\infty)$ 3) $(-0,5; +\infty)$ 4) [-400; 0] 5) $[-1; +\infty)$ 6) (0; 1000] 7) (6,75; 7] 8) $[0; +\infty)$
 - **19.** Найдите сумму (x + y), где (x; y) решение системы уравнений:

$$\begin{cases} x^2 - 5y^2 + 4 = 0, \\ \log_4 x - \log_4 y = 0. \end{cases}$$

1) 0,5 2)
$$\frac{1}{4}$$
 3) 0,25 4) 2 5) 1 6) 4 7) $\frac{1}{8}$ 8) $\left(\frac{1}{2}\right)^{-1}$

- **20.** Найдите координаты точек пересечения графиков функций $y = x^2 3x + 1$ и y = x 2.
 - 1) (1; 3) 2) (-1; -1) 3) (1; -1) 4) (-3; 1) 5) (3; -1) 6) (-1; 5) 7) (1; 1) 8) (3; 1)
 - **21.** Определите, при каких значениях аргумента значение $y = \frac{2}{x^2 + 1}$ равно 1.
 - 1) 1 2) 3 3) -0,5 4) -2 5) 0,5 6) -1 7) 2 8) 0