
- **1.** Решите систему неравенств: $\begin{cases} 2\sqrt{x+8} < 4, \\ \sqrt{3-2x} \ge 3 \end{cases}$ и укажите количество целых решений системы неравенств.
 - 3)5 4) 3 1) 2 2) 1
- 2. Сумма членов бесконечно убывающей геометрической прогрессии равна 9, а сумма квадратов членов прогрессии 40,5. Найдите знаменатель данной прогрессии.
 - 1) $-\frac{3}{2}$ 2) $\frac{3}{2}$ 3) 2 4) $\frac{1}{2}$ 5) $\frac{1}{3}$
- 3. Сумма семи первых членов геометрической прогрессии 48; 24; ... равна?
 - 2) 95,25 3) 63,25 4) 94,50
- **4.** Найдите частное $\frac{b_1}{q}$ для геометрической прогрессии, у которой сумма первого и третьего членов равна 40, а сумма второго и четвертого равна 80.
 - 1)4 2) 6 3) 8 4) 12 5) 2
- 5. Найдите целые решения системы неравенств: $\int 2(3x+2) > 5(x-1),$ $\begin{cases} 7(x+2) < 3(2x+3). \end{cases}$
 - 1) -9; -8; -7 2) -8; -7; -6; -5 3) -8; -7 4) -3; -2; -1 5) -8; -7; -6
 - 6. Решите систему неравенств: $\begin{cases} \sin 2x > 0, \\ \cos 2x \leqslant \frac{1}{2}. \end{cases}$
 - 1) $\left[\frac{\pi}{6} + \pi n; \frac{\pi}{2} + \pi n\right], n \in \mathbb{Z}$ 2) $\left[\frac{\pi}{4} + \pi n; \frac{\pi}{2} + \pi n\right], n \in \mathbb{Z}$ 3) $\left(\frac{\pi}{2} + 2\pi n; \pi + 2\pi n\right), n \in \mathbb{Z}$ 4) $\left(\frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n\right], n \in \mathbb{Z}$ 5) $\left[\frac{3\pi}{2} + 2\pi n; \frac{5\pi}{2} + 2\pi n\right), n \in \mathbb{Z}$
 - 7. Решите систему неравенств: $\begin{cases} 3^{2x-1} + 3^{2x-2} > 4, \\ 3x 10 \leqslant 2. \end{cases}$
 - 1)(1;2)5) (1; 4] 2) [0; 2] 3) [1; 2]
- 8. Укажите систему неравенств, которая задает множество точек, показанных штриховкой (1 клетка — 1 единица).

- 1) $\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$ 2) $\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$ 3) $\begin{cases} (x-2)^2 + (y+2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$ 4) $\begin{cases} (x-2)^2 + (y+2)^2 \ge 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$

5)
$$\begin{cases} (x+2)^2 + (y-2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$

9. Найдите сумму (x+y), где (x;y) — решение системы уравнений $\begin{cases} 3^{x+y} + 81^x = 82, \\ 3y^2 - x = 2, \end{cases}$ причем y < 0.

4) 2 5) 4

10. Производная функции $y = 3x^2 - 4\sqrt{x} - \frac{32}{x}$ в точке x = 4 равна 2) 17 3) 49

11. Найдите целые положительные решения системы неравенств: $\begin{cases} 1 - 0, 5x < 4 + x, \\ 9 - 2, 8x \geqslant 6 - 1, 3x. \end{cases}$

1) 0; 1; 2 2) 1; 2; 3; 4 3) 0; 1; 2; 3 4) 1; 2 5) 1; 2; 3

12. Решите систему неравенств: $\begin{cases} \sqrt{6x+12} < 2\sqrt{3}, \\ \sqrt{-3x+5} \geqslant 5. \end{cases}$

1) $\left[\frac{5}{3}; +\infty\right)$ 2) $\left(-\infty; -6\frac{2}{3}\right]$ 3) \varnothing 4) $\left(-\infty; 1\frac{2}{3}\right)$ 5) $\left(-6\frac{2}{3}; 1\frac{2}{3}\right)$

13. Решите систему неравенств: $\begin{cases} 4^{x} - 6 \cdot 2^{x} + 8 \leqslant 0, \\ 2x - 3 > 0. \end{cases}$ $1) (1; 2) \qquad 2) (1,5; 2] \qquad 3) [1,5; 2] \qquad 4) [1; 2]$ 5) (1; 1,5]

14. Решите систему неравенств: $\begin{cases} \sqrt{6x+12} < 12, \\ -3x+5 \geqslant 8. \end{cases}$

1) $x \in (-\infty; -1]$ 2) $x \in [-2; -1]$ 3) $x \in (1; 22]$ 4) $x \in \emptyset$ 5) $x \in [-2; 22)$

15. Найдите наименьшее целое решение системы неравенств:

 $\begin{cases} 5 - \frac{2}{x+3} \geqslant 0, \end{cases}$

2) -1 3) 1 4) 2 1) -2

16. Напишите уравнение касательной к графику функции y = f(x)в точке $x = x_0$, если $f(x) = 3x^2 - 7x + 4$ и $x_0 = -1$.

1) y = 7 + 12x 2) y = 1 - 13x 3) y = 5x - 114) y = 7x + 4 5) y = x - 4

17. Вычислите $\int_0^{\frac{\pi}{2}} \cos\left(2x + \frac{\pi}{3}\right) dx.$

1) $\frac{\sqrt{3}}{4}$ 2) $\frac{1}{2}$ 3) $-\frac{\sqrt{3}}{4}$ 4) $-\frac{\sqrt{3}}{2}$ 5) $\frac{\sqrt{3}}{2}$

18. Решите систему неравенств: $\begin{cases} 2\sin 2x + \sqrt{2} \geqslant 0, \\ 2\cos 2x - 1 \leqslant 0. \end{cases}$

1)
$$\left[\frac{\pi}{3} + 2\pi n; \frac{5\pi}{4} + 2\pi n\right), n \in \mathbb{Z}$$

2)
$$\left[\frac{\pi}{6} + \pi n; \frac{5\pi}{8} + \pi n\right), n \in \mathbb{Z}$$

3)
$$\left[\frac{\pi}{6} + \pi n; \frac{5\pi}{8} + \pi n\right], n \in \mathbb{Z}$$

4)
$$\left(\frac{\pi}{3}+2\pi n;\frac{5\pi}{4}+2\pi n\right), n\in\mathbb{Z}$$

5)
$$\left(\frac{\pi}{6} + \pi n; \frac{5\pi}{8} + \pi n\right], n \in \mathbb{Z}$$

19. Сумма бесконечно убывающей прогрессии равна 32, а сумма ее первых четырех членов 30. Чему равен первый член данной прогрессии, если знаменатель прогрессии больше нуля?

- 1)8 2) 12
- 3) 15
- 4) 16

20. Найдите знаменатель геометрической прогрессии (b_n) , если $b_{19} - b_{17} = 1800$, a $b_{18} - b_{16} = 600$.

- 1) $q = \frac{1}{6}$ 2) $q = \frac{1}{3}$ 3) q = 3 4) q = 6 5) $q = \frac{2}{9}$

21. Найдите корень уравнения $\sin 3x + \cos 3x = \sqrt{2}$, который принадлежит числовому интервалу (90°; 180°).

- 1) 135°
- 2) 255°
- 3) 175°
- 4) 190°

22. Производная функции $y = 3x^2 - 4\sqrt{x} - \frac{32}{x}$ в точке x = 4 равна

- 2) 17 3) 49

23. Напишите уравнение касательной к графику функции y = f(x)в точке $x = x_0$, если $f(x) = 3x^2 - 7x + 4$ и $x_0 = -1$.

- 1) y = 7 + 12x 2) y = 1 13x 3) y = 5x 11 4) y = 7x + 4