
- 1. Осевое сечение цилиндра квадрат. Радиус основания цилиндра равен 6 см. Найдите объем цилиндра.
 - 1) $424\pi \text{ cm}^3$
- 2) $428\pi \text{ cm}^3$
- 3) $432\pi \text{ cm}^3$
- 4) $420\pi \text{ cm}^3$
- 2. Радиус кругового сектора равен 6, а его угол равен 30°. Сектор свернут в коническую поверхность. Объем полученного конуса равен

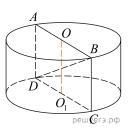
- 1) $\frac{\sqrt{143}\pi}{4}$ 2) $\frac{\sqrt{143}\pi}{8}$ 3) $\frac{\sqrt{143}\pi}{6}$ 4) $\frac{\sqrt{143}\pi}{24}$
- **3.** Расстояние от центра шара до плоскости сечения равно $5\sqrt{3}$. Радиус шара 10, тогда радиус сечения шара равен

- 1) 4
- 2) 5 3) $3\sqrt{3}$
- **4.** Цилиндр с радиусом основания $R = 2\sqrt{3}$ см вписан в правильную треугольную призму. Найдите площадь одной боковой грани призмы, если высота цилиндра 7 см.
- 1) 85 cm^2 2) 80 cm^2 3) 84 cm^2 4) 90 cm^2
- 5. Прямоугольный треугольник с гипотенузой 12 см и острым углом 60° вращается вокруг меньшего катета. Найдите высоту полученной фигуры вращения.
 - 8 см
- 2) 10 cм
- 3) 12 cm
- 4) 6 cm

6. Найдите образующую равностороннего конуса, если площадь осевого сечения равна $16\sqrt{3} \text{ см}^2$.

(Примечание Решу ЕНТ: видимо, равносторонним конусом составители задания называют такой, у которого осевое сечение — равносторонний треугольник.)

- 6 см
- 2) 8 cm
- 3) 10 см
- 4) 12 cm
- 7. В равносторонний конус вписан шар. Найдите площадь поверхности шара, если образующая конуса равна 6 см.


(Примечание Решу ЕНТ: видимо, равносторонним конусом составители задания называют такой, у которого осевое сечение — равносторонний треугольник.)

- 1) $13\pi \text{ cm}^2$ 2) $15\pi \text{ cm}^2$ 3) $16\pi \text{ cm}^2$ 4) $12\pi \text{ cm}^2$
- 8. В шар радиусом 5 м вписан цилиндр с диаметром основания 6 м. Высота цилин-
 - 1) 10 м
- 2) 4 M
 - 3) 6 M
- 4) 8 m
- 9. Определите длину диагонали осевого сечения цилиндра с радиусом 5 см и высотой 24 см.
 - 1) 32 cm
- 2) 26 см
- 3) 30 см
- 4) 27 cm
- 10. Радиус шара равен 12 см. Найдите радиус сечения шара, если плоскость сечения составляет угол 45° с радиусом, проведенным в точку сечения лежащую на сфере.
 - 1) $4\sqrt{2}$ cm 2) $3\sqrt{2}$ cm 3) $5\sqrt{3}$ cm 4) $6\sqrt{2}$ cm

- 11. Усеченный конус имеет высоту 12 см, а радиусы его верхнего и нижнего основания равны 4 см и 20 см. Найдите образующую усеченного конуса.
 - 1) 15 см
- 2) 20 cm 3) 8 cm
- 4) 12 cm
- 12. Высота конуса равна 30 см, а длина образующей 34 см. Найдите диаметр конуса.
 - 1) 33 cm
- 2) 30 см
- 3) 32 cm 4) 31 cm
- 13. Радиус верхнего основания усечённого конуса равен 2 м, высота 6 м. Найдите радиус нижнего основания, если его объём равен 38π м³.
 - 1) 4 M
- 2) 2 M
- 3) 3 M
- 4) 1 m
- 14. Найдите радиус шара, если треть его диаметра равна 6.
 - 1) 12
- 2) 9
- 3) 6
- 4) 10
- 15. Усеченный конус, у которого радиусы оснований равны 7 и 8, и полный конус такой же высоты равновелики. Найдите радиус основания полного конуса.

1) 13	2) 10	3) 12	4) 15
1) 13	Z) 10	3) 12	4) 13

16. Пусть O и O_1 — центры оснований цилиндра, изображенного на рисунке. Тогда образующей цилиндра является отрезок:

17. Из полного бокала, имеющего форму конуса высотой 9, отлили треть (по объему) жидкости. Вычислите $\frac{1}{2}h^3$, где h — высота оставшейся жидкости.

18. Площадь боковой поверхности цилиндра равна 28π , и его объем равен 28π . Найдите высоту цилиндра.

19. Секущая плоскость пересекает сферу по окружности, радиус которой равен 2. Если расстояние от центра сферы до секущей плоскости равно 4, то площадь сферы равна:

1)
$$40\pi$$
 2) 20π 3) 160π 4) 80π

20. Высота цилиндра в 3 раза больше радиуса его основания. Найдите объем цилиндра, если радиус основания равен $\sqrt{6}$.

1)
$$6\sqrt{6}\pi$$
 2) $54\sqrt{6}\pi$ 3) $9\sqrt{6}\pi$ 4) $18\sqrt{6}\pi$

21. Бокал имеет форму конуса. В него налита вода на высоту, равную 4. Если в бокал долить воды объемом, равным одной четвертой объема налитой воды, то вода окажется на высоте, равной:

1)
$$\sqrt[3]{100}$$
 2) $2\sqrt[3]{10}$ 3) $2\sqrt[3]{2}$ 4) $2\sqrt[3]{15}$

22. Площадь боковой поверхности цилиндра равна 15π . Найдите объем V цилиндра, если известно, что радиус его основания больше высоты на 3,5. В ответ запишите значение выражения $\frac{6 \cdot V}{\pi}$.

23. Найдите радиус основания цилиндра, разверткой боковой поверхности которой является квадрат со стороной 8.

1)
$$\frac{8}{\pi}$$
 2) $\frac{4}{\pi}$ 3) 4π 4) 2π

24. Найдите радиус основания цилиндра, разверткой боковой поверхности которой является квадрат со стороной 9.

1)
$$\frac{9}{\pi}$$
 2) 4π 3) $\frac{9}{2\pi}$ 4) 2π

25. Радиус конуса уменьшили в два раза. Во сколько раз уменьшился объем конуса?

26. Образующая конуса равна 4 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$4\pi$$
 2) 16π 3) 6π 4) 12π

27. Радиус конуса уменьшили в три раза. Во сколько раз уменьшился объем конуса?

28. Образующая конуса равна 6 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$9\pi$$
 2) 32π 3) 18π 4) 27π

29. Радиус конуса увеличили в три раза. Во сколько раз увеличился объем конуса?