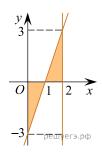
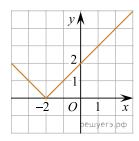

1. Найдите площадь заштрихованной фигуры:



- 1) 4,5 кв. ед.
- 2) 3 кв. ед.
- 3) 1,5 кв. ед.
- 4) 6 кв. ед.
- 5) 9 кв. ед.
- **2.** Решите систему неравенств: $\begin{cases} (x-1)(x-8) > 0, \\ x^2 6x + 8 \ge 0. \end{cases}$
- 1) $(-\infty; 1) \cup (8; +\infty)$ 2) $(-\infty; 2] \cup [4; +\infty)$ 3) $(-\infty; 2) \cup (4; +\infty)$ 4) [2; 4] 5) $(-\infty; 2) \cup (8; +\infty)$
- 3. Решите систему неравенств: $\begin{cases} \frac{x+3}{x-4} > 1, \\ \frac{x-5}{2x+4} \leqslant 2. \end{cases}$
 - 1) $\left[-4\frac{1}{3}; -2\right)$ 2) $\left(-\infty; -4\frac{1}{3}\right]$ 3) (-2; 4) 4) $(4; +\infty;)$ 5) $\left(-\infty; -4\frac{1}{3}\right)$
- **4.** Решите систему неравенств: $\begin{cases} 2(x-1) \geqslant 4(1-3x), \\ x+5 > 0. \end{cases}$
 - 1) $x > \frac{3}{7}$ 2) $x \ge \frac{3}{7}$ 3) $x \le -5$ 4) $x \ge -5$ 5) $x < \frac{2}{5}$
- **5.** Вычислите объем фигуры, получаемой вращением вокруг оси Ox дуги кривой $y=\cos x,\ x\in\left[0;\frac{\pi}{2}\right].$
 - 1) $\frac{\pi}{2}$ 2) π^3 3) $\frac{\pi}{3}$ 4) $\frac{\pi^2}{4}$ 5) $\frac{\pi^2}{6}$

- **6.** Найдите ускорение тела, двигающегося вдоль прямой по закону $X(t) = \frac{1}{3}t^3 + t^2 5t + 7$ в момент времени t = 2, 5.
 - 1) 6 2) 4 3) 5,5 4) 7
 - 4) 7 5) 3,5
- **7.** Найдите наименьшее целое число, удовлетворяющее неравенству $\int\limits_{-t}^{t} (2x+3) dx \leqslant 4.$
 - 1)-5 2) 1 3) 4 4)-4 5)-1
 - 8. По графику найдите множество значений функции.


- 1) $(2; +\infty)$ 2) $(-\infty; +\infty)$ 3) $(0; +\infty)$ 4) $[0; +\infty)$ 5) $(-2; +\infty)$
- 9. Найдите площадь заштрихованной фигуры (см. рис).

- 1) 1,5 кв. ед. 2) 3 кв. ед. 3) 9 кв. ед. 4) 6 кв. ед. 5) 4,5 кв. ед.
- 10. Среди 100 товаров в магазине есть 50 товаров по акции. Найдите вероятность того, что три любых товара окажутся по акции.
 - 1) $\frac{5}{33}$ 2) $\frac{2}{33}$ 3) $\frac{8}{99}$ 4) $\frac{4}{33}$ 5) $\frac{4}{99}$

- **11.** Укажите общий вид первообразной для функции $f(x) = \frac{1}{\sqrt{2x-3}}$ при $x \in \left(\frac{3}{2}; +\infty\right)$.
 - 1) $F(x) = 2\sqrt{2x 3} + C$ 2) $F(x) = -2\sqrt{2x 3} + C$ 3) $F(x) = \frac{1}{2}\sqrt{2x - 3} + C$ 4) $F(x) = \sqrt{2x - 3} + C$ 5) $F(x) = -\sqrt{2x - 3} + C$
 - **12.** Найдите промежуток, на котором функция $y = 7^{x^2 14x}$ возрастает.
 - 1) $[7; +\infty)$ 2) $(-\infty; 7]$ 3) $(-\infty; -7]$ 4) [-7; 7] 5) $[-7; +\infty)$
- 13. Химическая реакция подчиняется закону $H(t) = 5 \ln t + t^2$. Найдите скорость реакции в момент времени t=2.
 - 1) 5 2) 4 3) 4,5 4) 6 5) 6,5
 - **14.** Вычислите интеграл: $\int_0^{\frac{\pi}{3}} (\sin 3x \cos 2x \cos 3x \sin 2x) dx$.
 - 1) 1 2) 0,5 3) -0,5 4) 0 5) $\frac{\sqrt{3}}{2}$
- **15.** В круг радиусом 3 вписан квадрат. Вероятность, что наудачу брошенный дротик не попадёт в квадрат равна
 - 1) $\frac{\pi-2}{\pi}$ 2) $\frac{\pi+2}{\pi}$ 3) $\frac{2}{\pi}$ 4) $\frac{\pi}{2}$ 5) $\frac{\pi-2}{2}$
 - **16.** Найдите точку максимума функции: $y = \ln(x+13) 4x + 8$.
 - 1) -12 2) -12,75 3) 12,75 4) -13 5) 12
- **17.** Найдите наименьшее значение функции $y = 7x \ln(x+2)^7$ на отрезке [-1,5;0].
 - 1) 7 2) 2 3) 5 4) -7 5) -5
- **18.** Даны два множества $A = \{1; 2; 3; 4\}$ и $B = \{5; 6; 7\}$ из элементов этих множеств составляют двухзначные числа вида \overline{AB} . Какое количество чисел можно составить?
 - 1) 6 2) 7 3) 12 4) 4 5) 10

- **19.** Укажите одну из первообразных для функции $f(x) = -\frac{6}{x}$, при x > 0.
- 1) $F(x) = \frac{1}{6} \ln x$ 2) $F(x) = \ln x$ 3) $F(x) = 6 \ln x$ 4) $F(x) = -6 \ln x$ 5) $F(x) = -\frac{1}{6} \ln x$
- **20.** Областью определения функции $y = \sqrt{x} \sqrt{1 x^2}$ являются все значения x.
 - 1) $-1 \le x \le 1$ 2) $-1 \le x \le 0$ 3) $0 \le x \le 1$ 4) 0 < x < 1 5) -1 < x < 1
- **21.** Решите систему неравенств $\begin{cases} x^2 \geqslant 2,25, \\ (x+2)^2 \leqslant 1. \end{cases}$
- 1) (-3; -1] 2) [-3; -1,5) 3) [-1; 1,5] 4) (-3; 1,5) 5) [-3; -1,5]
- **22.** Найдите ускорение тела, двигающегося вдоль прямой по закону $X(t) = \frac{1}{3}t^3 + t^2 5t + 7$ в момент времени t = 2, 5.
 - 1) 6 2) 4 3) 5,5 4) 7
 - 23. По графику найдите множество значений функции.

- 1) $(2; +\infty)$ 2) $(-\infty; +\infty)$ 3) $(0; +\infty)$ 4) $[0; +\infty)$
- **24.** Найдите промежуток, на котором функция $y = 7^{x^2 14x}$ возрастает.
 - 1) $[7; +\infty)$ 2) $(-\infty; 7]$ 3) $(-\infty; -7]$ 4) [-7; 7]
- **25.** Химическая реакция подчиняется закону $H(t) = 5 \ln t + t^2$. Найдите скорость реакции в момент времени t=2.
 - 1) 5 2) 4 3) 4,5 4) 6,5

- **26.** Найдите точку максимума функции: $y = \ln(x+13) 4x + 8$.

- 1) -12 2) -12,75 3) 12,75 4) -13
- **27.** Найдите наименьшее значение функции $y = 7x \ln(x+2)^7$ на отрезке [-1,5;0].
 - 1) 7 2) 2 3) 5 4) -7
- **28.** Областью определения функции $y = \sqrt{x} \sqrt{1 x^2}$ являются все значения x.

 - 1) $-1 \le x \le 1$ 2) $-1 \le x \le 0$ 3) $0 \le x \le 1$ 4) 0 < x < 1