- **1.** Значение переменной x, при котором верно неравенство: $\frac{1}{5} < x < \frac{1}{2}$.
 - 1) $\frac{1}{4}$ 2) $\frac{1}{10}$ 3) $\frac{9}{10}$ 4) $\frac{4}{5}$ 5) $\frac{3}{4}$
- 2. Из точки, не принадлежащей плоскости, проведены две наклонные, которые образуют с плоскостью углы равные 30° и 60°. Сумма длин проекций этих наклонных на плоскость равна 8. Определите длину меньшей наклонной.
 - 1) 6 2) 4 3) 3 4) 5 5) 8
- **3.** Пусть ABCD квадрат, $BM \perp (ABC)$. Найдите длину отрезка DM, если $AB = 2\sqrt{3}$ cm, a BM = 5 cm.
 - 1) $6\sqrt{2}$ cm 2) $5\sqrt{3}$ cm 3) 7 cm 4) 6 cm 5) 5 cm
- 4. Прямоугольный треугольник с гипотенузой 12 см и острым углом 60° вращается вокруг меньшего катета. Найдите высоту полученной фигуры вращения.
 - 1) 8 cm 2) 10 cm 3) 12 cm 4) 6 cm 5) 14 cm
 - **5.** Упростите: $\frac{(3a^2b^3)^2}{18ab^6}$.
 - 1) $0.6a^2$ 2) $\frac{1}{2}a^2$ 3) $\frac{1}{2}a^4$ 4) $\frac{1}{2}a^5$ 5) $0.5a^3$
 - **6.** Вычислите: $7^{\log_2 9 \log_2 18}$.
 - 1) 1 2) 7 3) $\frac{1}{2}$ 4) $\frac{1}{40}$ 5) $\frac{1}{7}$
 - 7. Найдите значение выражения:

$$tg^2 \frac{4\pi}{3} \sin \frac{5\pi}{2} - 2\cos \frac{\pi}{2} + ctg \frac{3\pi}{4}.$$

- 1) 2 2) 4 3) 0 4) 2,5 5) 3
- **8.** Число n составляет p% от числа a. Число a равно

1)
$$a = \frac{100p}{n}$$
 2) $a = \frac{100}{np}$ 3) $a = \frac{100n}{2p}$ 4) $a = \frac{100p}{2n}$ 5) $a = \frac{100n}{p}$

9. Решением неравенства $x^2 + 2x - 3 \le 0$ является числовой промежуток.

- 1) (-3; 1] 2) [-3; 1) 3) [-1; 3]4) [-3; 1] 5) [1: 3]
- **10.** Разложите квадратный трехчлен $2x^2 + 7x 15$ на множители.

1)
$$(2x-5)(x+3)$$
 2) $(2x+5)(x-3)$ 3) $(x+5)(2x-3)$
4) $(x-5)(2x-3)$ 5) $(x+5)(2x+3)$

11. Вычислите 0,(53) + 1,(2).

1)
$$1\frac{20}{33}$$
 2) $1\frac{25}{33}$ 3) $1\frac{25}{30}$ 4) $2\frac{25}{33}$ 5) $\frac{25}{33}$

12. Сократите дробь: $\frac{a^2 + b^2 + 2ab - 9}{a^2 + ab - 3a}$.

1)
$$\frac{a+b-3}{a}$$
 2) $\frac{a+b+3}{b}$ 3) $\frac{a-b+3}{a}$ 4) $\frac{a-b-3}{b}$ 5) $\frac{a+b+3}{a}$

13. При каких значениях переменной x значение выражения $\frac{5x+4}{2}$ больше или равно значению выражения $\frac{31-5x}{3}$.

1)
$$\left[\frac{1}{2}; +\infty\right)$$
 2) $(-\infty; 2)$ 3) $\left(\frac{1}{2}; +\infty\right)$ 4) $(2; +\infty)$ 5) $[2; +\infty)$

14. Упростите выражение: $\sqrt[3]{25} \cdot \frac{\sqrt[3]{2}}{\sqrt[5]{-64}} \cdot \sqrt[3]{5}$.

15. Найдите значение выражения: $\operatorname{ctg}\left(\arcsin\frac{1}{2}\right)$.

1) 1 2)
$$\frac{\sqrt{3}}{2}$$
 3) $\sqrt{3}$ 4) $\frac{\sqrt{2}}{2}$ 5) $\frac{1}{2}$

16. Решите неравенство $\frac{x^2 + 16}{x^2 - 16} \leqslant \frac{25 + 8x}{x^2 - 16}$.

1)
$$[1;4) \cup (4;16]$$
 2) $[1;-2)$ 3) $(3;4)$ 4) $[1;+\infty)$ 5) $(-4;-1] \cup (4;9]$

- 17. Найдите значение выражения: $\left(\cos\frac{5\pi}{12}+\cos\frac{\pi}{12}\right)\cdot\left(\sin\frac{\pi}{12}-\sin\frac{5\pi}{12}\right).$
 - 1) $-\frac{\sqrt{3}}{2}$ 2) 1 3) $\frac{\sqrt{2}}{2}$ 4) $\sqrt{3}$ 5) $-\frac{\sqrt{6}}{2}$
- 18. Найдите радиус шара, если треть его диаметра равна 6.

4) 15

- 1) 12 2) 9 3) 6 4) 10 5) 18
- 19. Усеченный конус, у которого радиусы оснований равны 7 и 8, и полный конус такой же высоты равновелики. Найдите радиус основания полного конуса.
 - 1) 13
- 2) 10
- 3) 12
- 5) 14