
Демонстрационная версия ЕНТ-2023 по математике. Вариант 3.

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

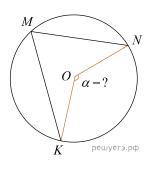
- 1. Найдите наибольший общий делитель чисел 60 и 75
 - 1) 15 2) 20 3) 3 4) 5
- **3.** По данным числам a и b на числовой прямой определить верное выражение

- **4.** Колесо машины за 2 с делает 6 оборотов. На сколько градусов повернется шип на колесе за 10 с?
 - 1) 10800° 2) 108° 3) 1080° 4) 180°
 - **5.** Укажите верное разложение на множители многочлена $ab a^2 + 2a 2b$

1)
$$(a+2)(b-a)$$
 2) $(a-2)(a-b)$ 3) $(a-2)(b-a)$ 4) $(a+2)(a-b)$

6. Решите уравнение $\left| x - \frac{1}{3} \right| = 7\frac{2}{3}$ и найдите сумму его корней

1)
$$\frac{2}{3}$$
 2) $-\frac{2}{3}$ 3) $1\frac{1}{3}$ 4) $7\frac{1}{3}$


7. Решите систему уравнений $\begin{cases} 3x - 2y = 4, \\ 5x + 2y = 20 \end{cases}$

1)
$$(-3; -2, 5)$$
 2) $(2,5; 3)$ 3) $(3; 2, 5)$ 4) $(3; -2, 5)$

8. Вычислите: $\lim_{x \to -2} \frac{x+2}{x^2-4}$

1)
$$\frac{1}{4}$$
 2) 4 3) -4 4) $-\frac{1}{4}$

9. Чему равен угол $\angle KON = \alpha$, если известно, что угол $\angle KMN = 65^{\circ}$.

10. Ящик в форме прямоугольного параллелепипеда имеет квадратное дно. Высота ящика 80 см. Диагональ боковой грани равна 1 м, тогда сторона основания ящика равна

11. Решите уравнение: $\cos 5x + \cos 3x = 0$

1)
$$\frac{\pi}{8} + \frac{\pi}{4}n; \frac{\pi}{2} + \pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$$
 2) $\frac{\pi}{8} + 2\pi n; \pi + 2\pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$ 3) $\frac{\pi}{3} + 2\pi n; \pi + 2\pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$ 4) $\pm \frac{\pi}{8} + 2\pi n; \frac{\pi}{2} + 2\pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$

- 12. Решите систему неравенств: $\begin{cases} 2x-5 < 4-x, \\ 7x-1 \geqslant 9+12x \end{cases}$ 1) [1;-2) 2) (-2;3] 3) $(-\infty;-2]$ 4) $[1;+\infty)$
- **13.** Найдите область определений функции: $f(x) = \frac{\sqrt{1-3x}}{x+2}$.

1)
$$(-\infty; -2) \cup \left(-2; \frac{1}{3}\right]$$
 2) $[-7; 2) \cup (2; 4)$ 3) $\left(-\infty; -\frac{1}{3}\right] \cup (4; 7]$ 4) $(-\infty; 6]$

14. Найдите вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 5.

1)
$$\frac{29}{36}$$
 2) $\frac{1}{9}$ 3) $\frac{1}{8}$ 4) $\frac{1}{6}$

15. Составьте уравнение окружности с центром в точке O(3; 4), если точка A(6; 8) лежит на окружности

1)
$$(x-6)^2 - (y-8)^2 = \sqrt{5}$$
 2) $(x-3)^2 + (y-4)^2 = 5$ 3) $(x-6)^2 + (y-8)^2 = \sqrt{5}$ 4) $(x-3)^2 + (y-4)^2 = 25$

16. Плоскость задана уравнением 3x + 2y - z + 6 = 0. Расстояние от точки D (-1; 3; 2) до плоскости равно

1)
$$\frac{\sqrt{15}}{2}$$
 2) $\frac{\sqrt{14}}{4}$ 3) $\frac{\sqrt{14}}{2}$ 4) $\frac{\sqrt{7}}{4}$

17. Решите уравнение: $\sqrt{2 - \log_2 x} = \log_2 x$.

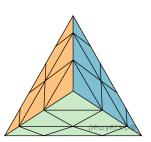
1) 2 2) 4 3)
$$\frac{3}{5}$$
 4) $\frac{1}{4}$

18. Решите систему уравнений:
$$\begin{cases} \left(\sqrt[x-1]{7}\right)^2 - \sqrt[y-1]{343} = 0, \\ 3^y = \left(\frac{1}{9}\right)^{y-2x} \end{cases}$$

1)
$$\left(-1; \frac{1}{2}\right)$$
 2) (3; 4) 3) (1; -2) 4) $\left(3; \frac{\sqrt{7}}{4}\right)$

19. Найдите сумму целых решений системы неравенств:
$$\begin{cases} \cos \pi \cdot x^2 + 2x + 3 \geqslant 0, \\ x - 2 < 0 \end{cases}$$

20. Цилиндр с радиусом основания $R=2\sqrt{3}$ см вписан в правильную треугольную призму. Найдите площадь одной боковой грани призмы, если высота цилиндра 7 см.


1)
$$85 \text{ cm}^2$$

$$2) 80 \text{ cm}^2$$

1)
$$85 \text{ cm}^2$$
 2) 80 cm^2 3) 84 cm^2

4)
$$90 \text{ cm}^2$$

Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: A — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

21. Найдите площадь поверхности всех «уголков»

1)
$$\frac{27\sqrt{3}}{2}$$
 cm² 2) $\frac{27\sqrt{3}}{4}$ cm² 3) $\frac{27\sqrt{3}}{8}$ cm² 4) $27\sqrt{3}$ cm²

$$2) \frac{27\sqrt{3}}{4} \text{cm}^2$$

3)
$$\frac{27\sqrt{3}}{8}$$
 cm²

4)
$$27\sqrt{3}$$
 cm²

22. Найдите площадь поверхности одного «ребра»

1)
$$\frac{9\sqrt{3}}{8}$$
 cm²

$$2) \frac{9\sqrt{3}}{4} \text{cm}^2$$

3)
$$\frac{9\sqrt{3}}{2}$$
 cm²

1)
$$\frac{9\sqrt{3}}{8}$$
 cm² 2) $\frac{9\sqrt{3}}{4}$ cm² 3) $\frac{9\sqrt{3}}{2}$ cm² 4) $\frac{27\sqrt{3}}{2}$ cm²

- 23. Под каким углом синяя грань Пирамидки наклонена к желтой грани?

- 1) $\arccos \frac{1}{2}$ 2) $\arccos \frac{1}{6}$ 3) $\arccos \frac{1}{3}$ 4) $\arccos \frac{2}{3}$
- 24. Какой высоты должна быть упаковка для Пирамидки?

 - 1) $3\sqrt{3}$ cm 2) $5\sqrt{6}$ cm 3) $3\sqrt{2}$ cm 4) $3\sqrt{6}$ cm
- 25. Изготовитель выбрал упаковку для Пирамидки в виде сферы. Каким должен быть диаметр упаковки?

1)
$$\frac{3\sqrt{6}}{2}$$
 cm

$$2) \frac{2\sqrt{6}}{3} cM$$

3)
$$\frac{5\sqrt{6}}{2}$$
 cm

1)
$$\frac{3\sqrt{6}}{2}$$
 cm 2) $\frac{2\sqrt{6}}{3}$ cm 3) $\frac{5\sqrt{6}}{2}$ cm 4) $\frac{9\sqrt{6}}{2}$ cm

26. Количество делителей числа 24 равно

1)
$$2^2$$
 2) 4 3) $\sqrt{64}$ 4) 8 5) 12 6) 2^3

27. Выберите промежутки, в которые входит значение выражения

$$\sin\left(\frac{\pi}{6} + \pi\right) - \cos\left(\pi - \frac{\pi}{6}\right) + tg\left(\pi + \frac{\pi}{4}\right) + tg\left(\frac{3\pi}{2} + \frac{\pi}{4}\right).$$
1) $(0,75;7]$ 2) $(100;1000]$ 3) $[0;1)$ 4) $(-0,5;+\infty)$ 5) $[0;+\infty)$ 6) $[-150;0)$

28. Упростите выражение $(-x^6y^2)^2 - 66x^{12}y^4 + 4(-2x^3y)^4$ и найдите его значение при x = -1, y = 2. Выберите промежутки, в которые входит значение данного выражения.

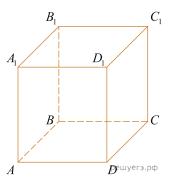
1)
$$[-150;0)$$
 2) $[-8;0)$ 3) $[-400;-10]$ 4) $(-10;0]$ 5) $[0;+\infty;)$ 6) $[0;1)$

29. Найдите общее решение дифференциального уравнения: y'' + 8y' + 16y = 0.

1)
$$y = e^{-4x}(C_1 + xC_2)$$
 2) $y = e^{-4x}C_1 + xe^{-4x}C_2$ 3) $y = e^{4x}(C_1 + C_2)$
4) $y = 4x(C_1 + xC_2)$ 5) $y = e^x(C_1 + xC_2)$ 6) $y = e^{-4x}(C_1 + C_2)$

30. Найдите x и y, если известно, что векторы $\vec{c} = (-2; y; -1)$ и $\vec{d} = (4; 5; x)$ коллинеарны. Выберите промежутки, в которые входят соответствующие значения x и y одновременно.

1)
$$(5; 6,5]$$
 2) $(1; 5,75)$ 3) $[-2,5; 7]$ 4) $[-5; 2,5)$ 5) $[-6; 2,25)$ 6) $(-3; 2]$


31. Запишите число $\frac{5i}{6-2i}$ в виде: (x+iy)

1)
$$-0.25 + 0.75i$$
 2) $-\frac{5+15i}{16}$ 3) $-\frac{5}{16} + \frac{15}{16}i$ 4) $\frac{1}{4} - \frac{3}{4}i$ 5) $-\frac{1}{4} + \frac{3}{4}i$ 6) $\frac{-1+3i}{4}$

32. Найдите все корни уравнения: $x^{\log_6 x - 1} = 36$.

1) 1 2)
$$\frac{1}{6}$$
 3) 36 4) 6 5) $\frac{1}{2}$ 6) $\frac{1}{36}$

33. Дан единичный куб $ABCDA_1B_1C_1D_1$. Найдите угол между прямой AB_1 и прямой BC_1 .

1)
$$\frac{180^{\circ}}{3}$$
 2) 60° 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ 5) 90° 6) 30°

34. Даны три числа, образующие геометрическую прогрессию. Если от первого числа вычесть 12, то эти числа образуют арифметическую прогрессию, которые в сумме равны большему члену геометрической прогрессии. Найдите эти числа и выберите из предложенных вариантов числа, соответствующие геометрической или арифметической прогрессиям

35. Треугольник ABC вписан в окружность с центром O. Сторона AB равна 12, угол C равен 60° . Из перечисленных ниже ответов выберите те, которые равны длине данной окружности.

1) $8\sqrt{3}\pi$ 2) $\left(\frac{1}{4}\right)^{-1}\sqrt{3}\pi$ 3) 8π 4) $\left(\frac{1}{8}\right)^{-1}\sqrt{3}\pi$ 5) $4\sqrt{3}\pi$ 6) $2\sqrt{3}\pi$