## Реальная версия ЕНТ по математике 2021 года. Вариант 4241

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Приведите одночлен  $7a^3c^3a^{-2}c^7$  к стандартному виду.

- 1)  $7ac^{-4}$  2)  $7a^{-5}c^{-10}$  3)  $7a^{-5}c^{10}$  4)  $7ac^{10}$  5)  $7a^{-6}c^{21}$
- **2.** Решите уравнение:  $\sin\left(2x + \frac{\pi}{4}\right) = 1$ .

- 1)  $-\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$  2)  $2\pi k, k \in \mathbb{Z}$  3)  $\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$  4)  $\frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$  5)  $\pm \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$
- **3.** Решите систему уравнений:  $\begin{cases} 16 2x + 3(y+4) = 17, \\ 2(x-5) 2(y-5) 44 = 0. \end{cases}$

- 4) (-55; 33) 5) (55; -33)
- 4. Ящик с яблоками разделили на 4 части пропорционально числам 3; 5; 7; 8. Сколько кг яблок было в ящике, если масса третьей части 21 кг?
  - 1) 40 кг
- 2) 69 кг
- 3) 36 кг
- 4) 38 кг
- 5) 37 KF

- **5.** Решите неравенство:  $3x + 5 \le 4x + 2$ .

  - 1)  $(-\infty; 2]$  2)  $(-\infty; 3)$  3)  $[3; +\infty)$  4)  $(3; +\infty)$  5)  $(2; +\infty)$

- **6.** Решите систему неравенств:  $\begin{cases} \sqrt{x-1} < 3, \\ \sqrt{2x-4} > 0. \end{cases}$
- 1) (-1;2) 2) (2;10) 3) (1,6;2,5] 4)  $[-\frac{1}{2};3)$  5) (-1;3]

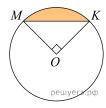
- 7. Какая из предложенных последовательностей задается формулой:  $b_n = 2^{n-3}$ .
- 1)  $\frac{1}{4}$ ;  $\frac{1}{2}$ ; 1; 2; 4;... 2)  $-\frac{1}{4}$ ;  $-\frac{1}{2}$ ; -1; -2; -4;... 3)  $\frac{1}{4}$ ;  $\frac{1}{2}$ ; -1; -2; -4;... 4)  $\frac{1}{4}$ ;  $\frac{1}{2}$ ;  $-\frac{1}{2}$ ;  $-\frac{1}{4}$ ;  $-\frac{1}{8}$ ;...
  - 5)  $\frac{1}{2}$ ;  $\frac{1}{4}$ ; 1; 2; 4;...

- 8. Для функции  $y=2\cos\left(\frac{\pi}{3}-2x\right)$ , найдите  $f'\left(\frac{\pi}{3}\right)$
- 1)  $\frac{\sqrt{3}}{2}$  2)  $2\sqrt{3}$  3)  $-2\sqrt{3}$  4)  $\sqrt{3}$  5)  $-\sqrt{3}$
- 9. Внешний угол правильного двадцатиугольника равен?
  - 1) 15°
- 2) 12°
- 3) 20° 4) 10°
- 5) 18°
- **10.** Площадь боковой поверхности правильной треугольной призмы равна 108 см<sup>2</sup>. Диагональ боковой грани наклонена к плоскости основания под углом 45°. Найдите объем данной призмы.

- 1)  $16\sqrt{2}$  cm<sup>3</sup> 2) 54 cm<sup>3</sup> 3) 48 cm<sup>3</sup> 4)  $54\sqrt{3}$  cm<sup>3</sup> 5)  $48\sqrt{3}$  cm<sup>3</sup>
- **11.** Найдите сумму бесконечной геометрической прогрессии, определяющейся по формуле  $b_n = 6 \cdot \left(\frac{1}{3}\right)^n$ .

  - 1) S = 9 2)  $S = \frac{1}{3}$  3) S = 3 4) S = 2 5)  $S = \frac{1}{9}$

- **12.** Найдите значение выражения:  $\operatorname{ctg}\left(\arcsin\frac{1}{2}\right)$ .
  - 1) 1 2)  $\frac{\sqrt{3}}{2}$  3)  $\sqrt{3}$  4)  $\frac{\sqrt{2}}{2}$  5)  $\frac{1}{2}$


- **13.** Найдите наименьшее целое решение системы неравенств:  $\begin{cases} 5 \frac{2}{x+3} \geqslant 0, \\ \frac{4x-7}{2x+3} < 2 \end{cases}$ 
  - ) -2 2) -1 3) 1 4) 2 5)
- **14.** Найдите наименьшее значение функции  $y = 7x \ln(x+2)^7$  на отрезке [-1,5;0].
  - 7 2) 2 3) 5 4) -7 5)
- **15.** В окружность с центром в точке O вписан треугольник ABC. Вершины треугольника разбивают окружность на дуги в отношении BC: CA: AB = 2:7:9. Больший угол треугольника COA равен?

5) 155°

- 1) 100° 2) 140° 3) 138° 4) 124°
- **16.** Упростите:

$$\frac{\left(b^{1,2} + \sqrt{2}\right)^3 + \left(b^{1,2} - \sqrt{2}\right)^3}{b^{2,4} + 6}.$$
(1)  $b^{2,4}$  2)  $b^{1,2}$  3)  $2b^{2,4}$  4)  $2b^{1,2}$  5)

**17.** В круге с центром в точке O и радиусом 4 угол MOK равен 90°. Площадь закрашенной части круга равна



- 1)  $8(\pi-1)$  2)  $4(\pi-2)$  3)  $4(\pi-4)$  4)  $8(\pi-2)$  5)  $2(\pi-4)$
- **18.** Турист прошел 6 км, поднимаясь в гору, и 3 км по спуску с горы, затратив на весь путь 2 часа. Скорость на спуске на 2 км/ч больше скорости на подъеме. Определите, сколько времени турист потратит на обратный путь, если скорости на спуске и на подъеме останутся прежними.
  - 1) 1,75 ч 2) 1,6 ч 3) 2 ч 4) 1,25 ч 5) 1,5 ч
  - 19. Решите систему неравенств:  $\begin{cases} 2\cos\frac{x}{4}+1\geqslant 0,\\ 2\sin\frac{x}{4}-\sqrt{2}\leqslant 0. \end{cases}$

1) 
$$\left[ -\frac{8\pi}{3} + 8\pi n; \pi + 8\pi n \right], n \in \mathbb{Z}$$
 2)  $\left( \frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n \right], n \in \mathbb{Z}$   
3)  $\left( \frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n \right] \cup \left[ \frac{3\pi}{2} + 2\pi n; \frac{5\pi}{2} + 2\pi n \right), n \in \mathbb{Z}$  4)  $\left( \frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n \right), n \in \mathbb{Z}$   
5)  $\left( -\frac{8\pi}{3} + 8\pi n; \pi + 8\pi n \right), n \in \mathbb{Z}$ 

- **20.** Стороны оснований правильной усеченной треугольной пирамиды 4 дм и 12 дм. Боковая грань образует с большим основанием угол 60°. Найдите высоту.
  - 1) 5 дм 2) 4 дм 3) 3 дм 4) 7 дм 5) 6 дм

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0.7 м  $\times$  1.4 м. На швы и обрезки тратится 10 % от площади крыши.

- 21. Чему равна площадь одного кровельного листа?
  - 1)  $1.6 \text{ m}^2$  2)  $0.98 \text{ m}^2$  3)  $0.96 \text{ m}^2$  4)  $9.8 \text{ m}^2$  5)  $98 \text{ m}^2$
- 22. Чему равна площадь поверхности башни?
  - 1)  $3\sqrt{11}\pi \text{ m}^2$  2)  $12\pi \text{ m}^2$  3)  $3\sqrt{13}\pi \text{ m}^2$  4)  $3\sqrt{15}\pi \text{ m}^2$  5)  $5\sqrt{13}\pi \text{ m}^2$
- **23.** Сколько нужно использовать материала (кровельного железа) для покрытия крыши с учетом швов и обрезок? (округлите до целых). ( $\pi = 3, 14$ )
  - 1)  $52 \text{ m}^2$  2)  $45 \text{ m}^2$  3)  $37 \text{ m}^2$  4)  $25 \text{ m}^2$  5)  $31 \text{ m}^2$
  - 24. Какое количество листов понадобится для башни?

1) 34 2) 30 3) 32 4) 38 5) 40

25. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?

1) в 24 раза 2) в 64 раза 3) в 13 раз 4) в 20 раз

**26.** Из нижеперечисленных ответов укажите те, 35% которых являются целым числом.
1) 50 2) 60 3) 40 4) 30 5) 90 6) 20 7) 70 8) 10

**27.** Корнями уравнения  $(x-1)(5^x-1)(x+1)(5^x+1)=0$  являются 1)-5 2)-1 3) 1 4) 3 5)-4 6) 0 7) 5 8) 4

**28.** Выберите из ниже предложенных ответов значения выражения  $\frac{x}{y}$ , где  $(x_n; y_n)$  — решения системы уравнений  $\begin{cases} x + y + xy = 11, \\ x + y + 1 = xy. \end{cases}$ 

1) 4 2)  $\frac{3}{5}$  3)  $\frac{1}{4}$  4)  $\frac{3}{2}$  5)  $-\frac{1}{2}$  6) -2 7)  $\frac{2}{3}$  8)  $\frac{5}{3}$ 

**29.** К 4% солевому раствору массой 250 г добавили соль и получили 20% раствор. Масса добавленной соли равна 1) 40 г 2) 0,04 кг 3) 20 г 4) 0,05 кг 5) 50 г 6) 30 г 7) 0,02 кг 8) 0,03 кг

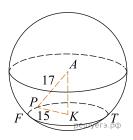
**30.** Какие из данных чисел не являются решениями неравенства 0, 7x + 8 > 0, 8x - 1?

1) 88 2) -500 3) 90 4) 0 5) 8 6) 95 7) 500 8) -45

**31.** Найдите отношение  $\frac{x}{y}$ , где (x; y) — решение системы уравнений:  $\begin{cases} \lg(x - y) = 2, \\ \lg x = \lg 3 + \lg y. \end{cases}$ 

1)  $3^0$  2)  $\frac{1}{3}$  3)  $\left(\frac{1}{3}\right)^{-1}$  4) 0,25 5) 2 6) 1 7) 3 8) 0,5

**32.** Упростите:  $|\sqrt{7} + \sqrt{5} - 4| + |\sqrt{7} + \sqrt{5} - 5|$ .


1) 
$$2\sqrt{7} - 2\sqrt{5} - 1$$
 2)  $2\sqrt{7}$  3) 1 4)  $2\sqrt{5} + 2\sqrt{7} + 1$  5) 2 6)  $2\sqrt{5} + 2\sqrt{7} - 1$  7)  $2\sqrt{5} - 2\sqrt{7} + 1$  8)  $2\sqrt{5} - 2\sqrt{7} - 1$ 

**33.** Одна из диагоналей параллелограмма перпендикулярна стороне. Найдите эту диагональ и площадь параллелограмма, если его периметр равен 16 см, а разность смежных сторон равна 2 см.

1)  $36 \text{ cm}^2$  2)  $80 \text{ cm}^2$  3) 13 cm 4) 5 cm 5) 4 cm 6) 12 cm 7)  $12 \text{ cm}^2$  8)  $6 \text{ cm}^2$ 

**34.** Решите неравенство  $\int_{x}^{3} (t+1)dt \geqslant 0$  и найдите все целые положительные решения неравенства. 1) 0 2) 4 3) 5 4) 6 5) 3 6) 2 7) 7 8) 1

**35.** Точка A — центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.



1)  $306\pi$  2)  $\frac{200}{3}\pi$  3)  $\frac{500}{3}\pi$  4)  $208\pi$  5)  $\frac{100}{3}\pi$  6)  $108\pi$  7)  $250\pi$  8)  $100\pi$