При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Вычислите: $6\sqrt{3} \sqrt{27} \sqrt{48}$.

 - 1) $\sqrt{3}$ 2) $-\sqrt{3}$ 3) $-2\sqrt{3}$ 4) -1
- **2.** Упростите выражение $\frac{6c-c^2}{1-c}$: $\frac{c^2}{1-c}$. и найдите его значение при c=1,2.
- **3.** Найдите значение выражения: $14 \sin 135^{\circ} \cdot \cos 135^{\circ}$.
 - 1) 14 2) 7 3) -7 4) -3.5
- **4.** Определите степень многочлена: $7x^4y^5 + 3y^6 5xy^7 2$.
 - 1) 6 2) 5 3) 9 4) 7

1) 1 2) 4 3) 2 4) 1.2

- **5.** Сумма корней квадратного уравнения $-3x^2 + 5x + 8 = 0$ равна
 - 1) $\frac{1}{5}$ 2) $\frac{3}{5}$ 3) $\frac{5}{3}$ 4) $\frac{2}{3}$
- 6. Решите систему уравнений

$$\begin{cases} xy = 12, \\ x(y+2) = 6. \end{cases}$$

Если $(x_0; y_0)$ — решение этой системы, то $x_0 + y_0 =$

- 1) -7 2) 7 3) -1 4) 8
- 7. Найдите неопределённый интеграл $\int \frac{2x^4 4x^3 + x + 5}{3x} dx.$

1)
$$\frac{1}{18}(3x^4 + 8x^3 + 6x + 30\ln x) + 6$$

1)
$$\frac{1}{18}(3x^4 + 8x^3 + 6x + 30\ln x) + C$$
 2) $\frac{1}{18}(3x^4 - 8x^3 + 6x + 30\ln x) + C$

- 3) $\frac{1}{18}(3x^4 + 8x^3 6x + 30\ln x) + C$ 4) $\frac{1}{18}(3x^4 8x^2 + 6x + 30\ln x) + C$
- **8.** Площадь боковой поверхности цилиндра равна 15π . Найдите объем V цилиндра, если известно, что радиус его основания больше высоты на 3,5. В ответ запишите значение выражения
 - 1) 225 2) 196 3) 250 4) 200
 - **9.** Решите систему неравенств: $\begin{cases} (x-1)(x-8) > 0, \\ x^2 6x + 8 \ge 0. \end{cases}$
- 1) $(-\infty; 1) \cup (8; +\infty)$ 2) $(-\infty; 2] \cup [4; +\infty)$ 3) $(-\infty; 2) \cup (4; +\infty)$ 4) [2; 4]

- 10. Решите уравнение: $\sin 2x \cdot \cos 2x = -\frac{1}{2}$
 - 1) $-\frac{\pi}{8} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$ 2) $\frac{\pi}{8} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$ 3) $-\frac{\pi}{4} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$ 4) $-\frac{\pi}{9} + \pi k, \ k \in \mathbb{Z}$
- **11.** Найдите значение производной функции в точке $x^{\frac{4}{5}} 6x + 7x^2$ в точке x = 1.
 - 1) $\frac{44}{5}$ 2) $\frac{36}{5}$ 3) 8 4) $\frac{48}{5}$
- 12. Определите длину промежутка, соответствующего решению $\frac{(x^3-64)(x^3+1)}{(x^2+1)^2} \ge 0.$
 - 1) 3 2) 2 3) 5 4) 4
 - 13. Гипотенуза прямоугольного треугольника с катетами 6 и 12 равна

 - 1) $6\sqrt{3}$ 2) $12\sqrt{5}$ 3) $6\sqrt{5}$ 4) $12\sqrt{2}$

- **14.** Вычислите $\int_{-\infty}^{3} x(x-6)(4-x)dx$.
 - 1) $-\frac{153}{4}$ 2) 0 3) $\frac{117}{4}$ 4) $-\frac{155}{4}$
- **15.** Пусть ABCD квадрат, $BM \perp (ABC)$. Найдите длину отрезка DM, если $AB = 2\sqrt{3}$ см. a BM = 5 cm.

1)
$$6\sqrt{2}$$
 cm 2) $5\sqrt{3}$ cm 3) 7 cm 4) 6 cm

- **16.** Решите дробно-иррациональное уравнение $2\sqrt{x-3} \frac{1}{\sqrt{x-3}} = 1$.
- 1) 4 2) 1 3) 0 4) 2
- 17. Решите систему неравенств: $\begin{cases} 6 + 2x \geqslant x 2, \\ 4x 5 \leqslant 7. \end{cases}$

 - 1) (-8;3) 2) (-8;-3] 3) [-8;3] 4) (-8;3]
- 18. Найдите площадь фигуры, ограниченной прямой параболой: $y = -x^2$, y = x + 2, $-3 \le x \le 2$.

1)
$$\frac{115}{12}$$
 2) $\frac{119}{6}$ 3) $\frac{115}{6}$ 4) 19

- **19.** Прямоугольник ABCD вписан в окружность. Дуга BC равна 40° . Меньший угол между диагоналями прямоугольника равен?
- 2) 20° 3) 35° 4) 40°
- **20.** Найдите знаменатель геометрической прогрессии (b_n) , если $b_{19}-b_{17}=1800$, а $b_{18} - b_{16} = 600.$

1)
$$q = \frac{1}{6}$$
 2) $q = \frac{1}{3}$ 3) $q = 3$ 4) $q = 6$

21. На рисунке изображен ромб АВСД. Найдите длины векторов: $\overrightarrow{AB} + \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AC}$, echy $\overrightarrow{DB} = 10$, $\overrightarrow{AC} = 24$.

- 1) 6, 13, 24
- 2) 24, 7, 13 3) 19, 10, 16
 - 4) 24, 10, 13

- **22.** Упростите: $\frac{\sin 3\alpha}{\sin \alpha} \frac{\cos 3\alpha}{\cos \alpha}$.
 - 1)0
- 2) 1 3) 2 4) -1
- **23.** Сумма корней (или корень, если он один) уравнения $2 \cdot 6^{\log_7 x} = 108 x^{\log_7 6}$ равна ...
 - 1) 25

- 4) 36

24. Решите простейшее тригонометрическое неравенство $\sin x > \frac{1}{2}$.

1)
$$\left(\frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k\right)$$
, $k \in \mathbb{Z}$ 2) $\left(\frac{\pi}{3} + 2\pi k; \frac{2\pi}{3} + 2\pi k\right)$, $k \in \mathbb{Z}$

2)
$$\left(\frac{\pi}{3} + 2\pi k; \frac{2\pi}{3} + 2\pi k\right), k \in \mathbb{Z}$$

3)
$$\left(-\frac{\pi}{6} + 2\pi k; \frac{\pi}{6} + 2\pi k\right), k \in \mathbb{Z}$$

3)
$$\left(-\frac{\pi}{6} + 2\pi k; \frac{\pi}{6} + 2\pi k\right), k \in \mathbb{Z}$$
 4) $\left(-\frac{\pi}{3} + 2\pi k; \frac{\pi}{3} + 2\pi k\right), k \in \mathbb{Z}$


25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = 4 - 2x - x^2$, $x_0 = 4$.

1)
$$y = -10x - 20$$
 2) $y = -10x + 40$ 3) $y = -10x + 20$ 4) $y = -10x + 60$

Конус

Слово «конус» греческого происхождения и означает — «сосновая шишка».

H = 12 cm, R = 5 cm

Артем на свой день рождения решил пригласить школьных друзей: Аружан, Айшу, Ланила и Мираса. Приготовил для себя и своих гостей конусообразный праздничный головной убор — колпак (для приготовления одного колпака понадобится: 1 лист бумаги формата A4 (29.7×21 см), резинку длиной 8 см и ленты разных цветов)

- **26.** Найдите площадь основания конуса ($\pi \approx 3$).
- 1) 70 cm^2 2) 65 cm^2 3) 72 cm^2 4) 75 cm^2
- **27.** Найдите площадь боковой поверхности конуса ($\pi \approx 3$).
 - 1) 200 cm^2 2) 205 cm^2 3) 190 cm^2 4) 195 cm^2

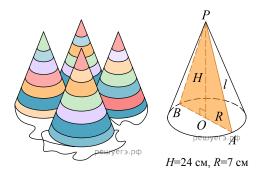
- 28. На сколько увеличится боковая поверхность колпака, если высоту и радиус основания увеличить на 3 см?
 - 1) $72\pi \text{ cm}^2$ 2) $71\pi \text{ cm}^2$ 3) $70\pi \text{ cm}^2$ 4) $69\pi \text{ cm}^2$

Ученик запланировал ремонт в своей комнате длиной 4 м, шириной 5,25 м и высотой 3 м. Он решил профессионально составить смету, чтобы уложиться в бюджет. Для потолка ученик выбрал натяжные потолки с монтажом, на стены решил поклеить обои, а для ремонта пола выбрал ламинат, так как по рекомендациям он очень практичен и разнообразен.

Таблица цен на строительный материал в г. Нур-Султан

№	Наименование материала	Цена (тенге)
1	Обои (длина 12 м, ширина 1 м)	11 500
2	Натяжные потолки с монтажом (1 кв. м)	1200
3	Ламинат (1 кв. м)	6200
4	Галтели (длина 2,2 м)	1050
5	Клей для галтелей (тюбик 310 мл), 1 тюб на 20 м	900
6	Клей для обоев, 1 пачка на 25 м ₂	850
7	Плинтус (длина 2,2 м)	690
8	Клей для плинтуса (тюбик 310 мл), 1 тюб на 20 м	900

29. Во сколько обошелся ремонт пола, если застелили ламинат и наклеили плинтус с учетом двери с проемом в 1 м?


1) 130 200 тг

2) 136 620 тг

3) 135 720 тг

4) 139 650 тг

Айша изготовила конусообразный головной убор — колпак (см. рис.).

30. Если стакан и колпак имеют одинаковые объемы, то сколько бы поместилось воды в стакан, если $\pi \approx 3$?

1) 1164 cm^3 2) 1182 cm^3 3) 1170 cm^3 4) 1176 cm^3

31. Функция задана уравнением $y = \sqrt{x^2 + 4x - 5}$. Установите соответствия:

А) Область определения функции $1) \ (-\infty; \ -1) \cup (5; \ +\infty)$ Б) Нули функции $2) \ \{-5; \ 1\}$ $3) \ \{-1; \ 5\}$ $4) \ (-\infty; \ -5] \cup [1; \ +\infty)$

32. Дана равнобокая трапеция, описанная около окружности с радиусом 6. Боковая сторона трапеции равна 13. Установите соответствие между значениями средней линии, высоты трапеции и промежутками, которым они принадлежат.

A) средняя линия трапеции
Б) высота трапеции
2) [6; 10]
3) (14; 16]
4) (12; 18)

33. Найдите два натуральных числа x и y, x > y, если известно, что сумма чисел x и y равна 7, а произведение этих чисел равно 12.

А) Число *х* принадлежит промежутку

Б) Число *у* принадлежит промежутку

2) (1; 3]

3) (5; 6]

4) (0; 2)

34. Даны уравнения $x^2 - 5x + 6 = 0$ и 2x(x-2) = 0. Установите соответствия:

 A) Каждое число является корнем хотя
 1) 2, 3, 4

 бы одного из уравнений
 2) 0, 2, 3

 Б) Ни одно из чисел не является корнем
 3) -1, 4, 6

 уравнений
 4) -1, 0, 1

35. Дана геометрическая прогрессия (b_n) , где $b_3 = 10$ и $b_6 = 80$. Установите соответствие между выражением и его числовым значением.

A) S_5 1) 67,5 B) 19 · b_1 2) 57,5 3) 47,5 4) 77,5

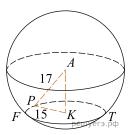
36. Выберите все промежутки, которым принадлежит значение выражения 4(1,5x+1)-(2,1-3x)-0,9 при x=1.

37. Из перечисленных ниже ответов найдите те, которые равны значению выражения: $\sin 30^\circ - 3 \, \text{tg} \, \frac{\pi}{4}$.

1) -2,5 2)
$$-2\frac{1}{2}$$
 3) $2\frac{1}{2}$ 4) $\frac{3}{2}$ 5) $-\frac{5}{2}$ 6) $\frac{5}{2}$

38. Три положительных числа, взятые в определенном порядке, образуют арифметическую прогрессию. Если среднее из чисел уменьшить в 3 раза, то в том же порядке получится убывающая геометрическая прогрессия. Найти ее знаменатель.

1)
$$3+\sqrt{8}$$
 2) $\sqrt{2}$ 3) $1+\sqrt{8}$ 4) $3+2\sqrt{2}$ 5) 4 6) $3+\sqrt{2}$


39. Если пара чисел $(x_0; y_0)$ решение системы уравнений

$$\begin{cases} \log_5(y-x) = 1, \\ 5^{x+1} \cdot 2^y = 16, \end{cases}$$

то значение выражения $3x_0 + y_0^2$ равно

1)
$$\sqrt{169}$$
 2) 11 3) 19 4) $\sqrt{361}$ 5) 13

40. Точка A — центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.

6) $\sqrt{121}$

1)
$$306\pi$$
 2) $\frac{200}{3}\pi$ 3) $\frac{500}{3}\pi$ 4) 208π 5) $\frac{100}{3}\pi$ 6) 108π