При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Вычислите: $(2\sqrt{8} + 3\sqrt{5} 7\sqrt{2})(2\sqrt{2} + 2\sqrt{5})$.

 1) 32 2) 30 3) 18 4) 16
- **2.** Упростите выражение $\frac{9b}{a-b} \cdot \frac{a^2-ab}{54b}$ и найдите его значение при $a=-63,\ b=9,6.$
- 3. Найдите значение выражения $24\sqrt{2}\cos\left(-\frac{\pi}{3}\right)\sin\left(-\frac{\pi}{4}\right)$.
 - 1) $12\sqrt{2}$ 2) -12 3) -48 4) 24
- **4.** Упростите выражение и запишите в стандартном виде: $(a+5)^2 5a(2-a)$.

1)
$$-4a^2 + 25$$
 2) $6a^2 + 25$ 3) $-a^2 + 25$ 4) $6a^2 - 25$

5. Равенство |-7+3k|=2 верно, если k равно

1) 2;
$$1\frac{3}{5}$$
 2) 3; $1\frac{3}{5}$ 3) 3; $1\frac{2}{3}$ 4) -3; $\frac{3}{5}$

- **6.** Решите систему уравнений: $\begin{cases} x 5y = -21, \\ x + y = -9. \end{cases}$ 1) (-11; 2) 2) (-7; 3) 3) (11; -2) 4) (-10; 1)
- 7. Найдите интеграл: $\int \frac{1}{x+2} dx.$

1)
$$\ln |x-2| + C$$
 2) $\ln |x+2| + C$ 3) $\ln |x| + C$ 4) $\ln (x+2) + C$

8. Образующая конуса равна 4 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$4\pi$$
 2) 16π 3) 6π 4) 12π

9. Найдите наибольшее целое решение системы неравенств $\begin{cases} |x+2| \leqslant 8, \\ \frac{x^2 - 6x + 5}{x^2 - 5} > 1. \end{cases}$

1) 2 2) 5 3) 6 4)
$$\sqrt{5}$$

10. Решите уравнение: $tg\left(2x + \frac{\pi}{6}\right) = -1$.

1)
$$\frac{5\pi}{12} + \pi k$$
, $k \in \mathbb{Z}$ 2) $-\frac{7\pi}{24} + \frac{\pi}{2}k$, $k \in \mathbb{Z}$ 3) $\frac{5\pi}{24} + \frac{\pi}{2}k$, $k \in \mathbb{Z}$

4)
$$-\frac{5\pi}{24} + \frac{\pi}{2}k, \ k \in \mathbb{Z}$$

11. Найдите значение производной функции $x^3 - x^2$ в точке x = 1. 1) 2 2) 5 3) 0 4) 1

12. Решением неравенства |x+2| > 1 является числовой промежуток?

1)
$$(-\infty; -3) \cup (-1; +\infty)$$
 2) $[-3; -1) \cup (-1; +\infty)$ 3) $(-\infty; -3) \cup (1; +\infty)$ 4) $(-3; -1)$

13. Стороны треугольника равны 4 см, 5 см, 6 см. Найдите проекцию средней стороны на большую.

14. Вычислите интеграл: $\int_{-5}^{1} (x+2)^2 dx$.

15. Найдите объем правильной треугольной усеченной пирамиды, высота которой 6 м и стороны оснований 3 м и 4 м.

1)
$$\frac{19\sqrt{3}}{2}$$
 3 2) $\frac{39\sqrt{3}}{2}$ 3 3) $27\sqrt{3}$ 3 4) $\frac{37\sqrt{3}}{2}$ 3

16. Решите уравнение $(0,25)^{2-x} = \frac{128}{2^{x+2}}$

17. Решите систему уравнений: $\begin{cases} \lg x + \lg y = 1, \\ x - y = 3. \end{cases}$ 1) (100; 100) 2) (2; 5) 3) (2; 100) 4) (5; 2)

18. Найдите площадь фигуры, ограниченной прямой и параболой: $y = x^2 + 2x$, y = x + 2.

1)
$$\frac{9}{2}$$
 2) $\frac{7}{2}$ 3) $\frac{9}{4}$ 4) $\frac{31}{6}$

19. Внешний угол правильного двадцатиугольника равен?

20. Найдите первый член арифметической прогрессии, если сумма двадцати яти первых членов прогрессии равна 250 и d = 3.

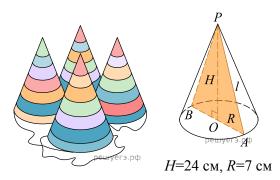
21. Найдите $|\vec{a} + \vec{b}|$:

22. Упростите:

$$\frac{\left(b^{1,2}+\sqrt{2}\right)^3+\left(b^{1,2}-\sqrt{2}\right)^3}{b^{2,4}+6}.$$

1)
$$b^{2,4}$$
 2) $b^{1,2}$ 3) $2b^{2,4}$ 4) $2b^{1,2}$

23. Решите уравнение: $\log_{\frac{1}{5}}(-2-3x) = \log_{\frac{1}{5}}(x^2-2)$.

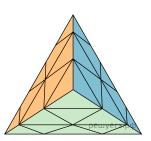

24. Решите неравенство $2^x + 2^{x+3} \ge 144$.

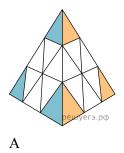
1)
$$[34,5; +\infty)$$
 2) $[4; +\infty)$ 3) $(-\infty; 4]$ 4) $(-\infty; 4,5]$

25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = 2\sin x - \cot x, \ x_0 = \frac{\pi}{4}.$

1)
$$y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{2} + \sqrt{2} - 1$$
 2) $y = 2x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$ 3) $y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2}$ 4) $y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$

Айша изготовила конусообразный головной убор — колпак (см. рис.).


26. Найдите площадь основания конуса, $\pi \approx 3$.


1)
$$151 \text{ cm}^2$$
 2) 138 cm^2 3) 147 cm^2

3)
$$147 \text{ cm}^2$$

4)
$$125 \text{ cm}^2$$

Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: A — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

27. Найдите площадь поверхности одного «ребра»

1)
$$\frac{9\sqrt{3}}{8}$$
 cm² 2) $\frac{9\sqrt{3}}{4}$ cm² 3) $\frac{9\sqrt{3}}{2}$ cm² 4) $\frac{27\sqrt{3}}{2}$ cm²

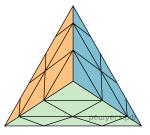
3)
$$\frac{9\sqrt{3}}{2}$$
 cm

4)
$$\frac{27\sqrt{3}}{2}$$
 cm²

Торт в форме цилиндра. Высота торта 20 см. Диаметр 30 см. Средняя плотность торта 0,4 г/см³.

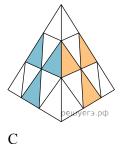
28. Для упаковки тортов фабрика изготавливает коробки в виде прямоугольного параллелепипеда. Для данного торта нужно изготовить коробку объём которой равен?

- 1) $1, 8 \cdot 10^4 \text{ cm}^3$ 2) $1, 6 \cdot 10^4 \text{ cm}^3$ 3) $1, 8 \cdot 10^3 \text{ cm}^3$ 4) $9 \cdot 10^4 \text{ cm}^3$


Семейная пара собирается в поездку на поезде. В составе поезда имеются следующие типы вагонов:

- 1) СВ купе на 2 человека;
- 2) Купе купе на 4 человека;
- 3) Плацкарт А вагон на 36 человек;
- 4) Плацкарт В вагон на 54 человека;
- 5) Общий вагон вагон на 81 человек.

29. Определите, сколькими способами пара сможет разместиться в вагоне типа Плацкарт A.


- 1) 2120
- 2) 680
- 3) 890
- 4) 1260

Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: A — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

A

30. Изготовитель выбрал упаковку для Пирамидки в виде сферы. Каким должен быть диаметр упаковки?

1)
$$\frac{3\sqrt{6}}{2}$$
 cm

2)
$$\frac{2\sqrt{6}}{3}$$
 c

1)
$$\frac{3\sqrt{6}}{2}$$
 cm 2) $\frac{2\sqrt{6}}{3}$ cm 3) $\frac{5\sqrt{6}}{2}$ cm 4) $\frac{9\sqrt{6}}{2}$ cm

4)
$$\frac{9\sqrt{6}}{2}$$
 cm

31. Квадратичная функция задана в виде $y = (x-2)^2 - 1$. Установите соответствия между координатами вершины параболы, нулями функции и их значениями.

- А) нули функции
- Б) координаты вершины параболы

- 1) (-2; -1)
- 2) {1; 3}
- (2;-1)
- 4) {1:2}

32. В прямую призму, в основании которой леж	сит треугольник со сторонами 3, 4, 5, вписан шар.
Установите соответствие между высотой призмы, об	бъемом призмы и их числовыми значениями.

А) Высота призмы	1) 2
Б) Объем призмы	2) 4
	3) 6
	4) 12

33. Представьте в виде многочлена выражение $(x-1)^3(2x+4)$. Установите соответствия между коэффициентом при x, суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

А) Коэффициент при х	1) (-1; 1)
Б) Сумма коэффициентов многочлена	2) (0; 3)
	3) [7; 12)
	4) [-4: 0)

34. Даны уравнения $x^2 + 4 = x(2x - 3)$ и $(x^2 + 4x)\sqrt{x - 3} = 0$. Установите соответствия:

А) Каждое число является корнем хотя бы одного из	1)-1, 3, 4
уравнений	2) 2, 1, 0
Б) Ни одно из чисел не является корнем уравнений	3) 5, -1, 4
	4) 4, 1, 8

35. У геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Установите соответствие между выражением и его числовым значением.

A)
$$b_1$$
 1) 25
B) b_3 2) 2
3) 100
4) 75

36. Упростите выражение 5(2m+5n)-3(5n-3m).

1)
$$19m - 10n$$
 2) $18m + 10n$ 3) $19m + 10n$ 4) $18m - 11n$ 5) $18m + 11n$ 6) $19m + 11n$

37. Значение выражения $10\cos\frac{5\pi}{12}\sin\frac{5\pi}{12}$ равно

1)
$$\frac{5\sqrt{3}}{2}$$
 2) $\frac{5}{2}$ 3) 5 4) -5 5) $\frac{5\sqrt{2}}{2}$ 6) $-\frac{5\sqrt{3}}{2}$

38. Сумма трех чисел, составляющих арифметическую прогрессию, у которой разность больше нуля, равна 18. Если к этим числам прибавить соответственно 4, 2 и 18, то полученные числа составляют первые три члена геометрической прогрессии. Найдите эти три числа.

$$1)-2$$
 2) 6 3) 8 4) 14 5) 10 6) 4

39. Решите систему уравнений:

$$\begin{cases} \frac{2}{2x-y} + \frac{3}{x-2y} = \frac{1}{2}, \\ \frac{2}{2x-y} - \frac{1}{x-2y} = \frac{1}{18}. \end{cases}$$

В ответе укажите значение выражения $x \cdot y$.

1) -5 2)
$$-\sqrt{100}$$
 3) 10 4) 5 5) -10 6) $\sqrt{25}$

40. SABCD — правильная четырехугольная пирамида, сторона основания которой 10, а боковое ребро равно $2\sqrt{22}$. Найдите периметр сечения плоскостью, проходящей через точки B и D параллельно ребру AS.

1) $2\sqrt{22}$ 2) $18\sqrt{2}$ 3) $24\sqrt{2}$ 4) 24 5) $18\sqrt{22}$ 6) $22\sqrt{2}$