
При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Вычислите: $\log_{\frac{1}{2}} 9 + \log_2 16$.
- $1)\ 4 \qquad 2)\ 6 \qquad 3)\ 1 \qquad 4)\ 2$ 2. Упростите выражение $\frac{(a-2b)^2-4b^2}{a}$ и найдите его значение при $a=0,3;\ b=-0,35.$
- **3.** Упростите выражение: $\frac{\cos 50^{\circ} + \sin^2 25^{\circ}}{\cos^2 25^{\circ}} + 1$. $\frac{1}{5^{\circ}} + 1.$ 1) $\sin 25^{\circ} + 1$ 2) $\cos 25^{\circ}$ 3) 0 4) 2
- **4.** Укажите верное разложение на множители многочлена $2ab+3b^2+2a+3b$. 1) (2a+3b)(a+1) 2) (2a+1)(b+3) 3) (a+3b)(b+1) 4) (2a+3b)(b+1)
- **5.** Решить уравнение: $16x^2 9 = 0$.
 - 1) 4 u 4 2) 3 u 3 3) $\frac{3}{4} \text{ u} \frac{3}{4}$ 4) $\frac{9}{16} \text{ u} \frac{9}{16}$
- **6.** Решите систему уравнений: $\begin{cases} 3x 5y = 23, \\ 2x + 3y = 9. \end{cases}$ 1) (6; 1) 2) (6; -1) 3) (-6; -1) 4) (2; -6)
- 7. Найдите неопределённый интеграл $\int (\sin x \cos 2x + \sin 2x \cos x) dx$.

1)
$$\frac{1}{3}\cos 3x$$
 2) $-\frac{1}{3}\sin 3x$ 3) $-\frac{1}{3}\cos 3x$ 4) $-\cos 3x$

8. Пусть O и O_1 — центры оснований цилиндра, изображенного на рисунке. Тогда образующей цилиндра является отрезок:

- 9. Решите систему неравенств: $\begin{cases} 9+2x>7+x,\\ 2-3x\geqslant 2x-8. \end{cases}$ 1) [-2; 2) 2) (2; + ∞] 3) [-2; 3) 4) (-2; 2]
- **10.** Решите уравнение: $\arccos x = \sin \frac{\pi}{6}$.

1)
$$\cos 1$$
 2) 0 3) $\frac{\pi}{2}$ 4) $\cos \frac{1}{2}$

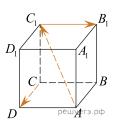
11. Найдите первообразную функции $f(x) = \frac{3x^3 + 2x^2}{x^2}$, проходящую через точку (-1; 3).

1)
$$\frac{3}{2}x^2 + 2x$$
 2) $\frac{3}{2}x^2 - 2x + \frac{7}{2}$ 3) $\frac{3}{2}x^2 + 2x + \frac{7}{2}$ 4) $\frac{3}{2}x^3 - 2x + \frac{7}{2}$

12. Значение переменной *x*, при котором верно неравенство: $\frac{1}{5} < x < \frac{1}{2}$.

1)
$$\frac{1}{4}$$
 2) $\frac{1}{10}$ 3) $\frac{9}{10}$ 4) $\frac{4}{5}$

- **13.** Найдите угол B треугольника ABC, если A(1; 1), B(4; 1) и C(4; 5).
 - 1) 90°
- 2) 60°
- 4) 120°


- **14.** Вычислите $\int_{-\infty}^{\infty} (3x^2 2x) dx$.
- 1) 12
- 2) 24
- 3) 40 4) 52
- 15. Основанием правильной треугольной пирамиды является равносторонний треугольник со стороной 6 см. Высота пирамиды равна 9 см. Найдите объем пирамиды.

- 1) $36\sqrt{3}$ cm³ 2) 36 cm³ 3) 54 cm³ 4) $27\sqrt{3}$ cm³
- **16.** Решите уравнение: $\sqrt{x} + \sqrt[4]{x} = 2$.
- 1) 2 2) 0 3) 3 4) 1
- 17. Решите систему неравенств: $\begin{cases} \log_{\frac{1}{5}} x^2 \geqslant \log_{\frac{1}{5}} 75 \log_5 3, \\ 2(x-3) > 4. \end{cases}$ 1) [5; 15) 2) [2; 7] 3) [15; +∞) 4) (5; 15]

- **18.** Площадь фигуры, ограниченной графиками функций $y = x^2 1$ и y = x + 1 равна

- 19. Окружность радиуса 4 вписана в прямоугольную трапецию с тупым углом 150°. Площадь трапеции равна
 - 1)64
- 2) 35
- 3)96 4) 56
- **20.** Первый член арифметической прогрессии равен 8, разность прогрессии равна 3. Найдите a_{25} .

- **21.** Используя данные рисунка найдите сумму векторов $\overrightarrow{C_1B_1} + \overrightarrow{CD} + \overrightarrow{AC_1}$

- 1) \overrightarrow{AD} 2) $\overrightarrow{A_1B_1}$ 3) $\overrightarrow{BC_1}$ 4) $\overrightarrow{BB_1}$
- 22. Некоторое двузначное число разделили на разность его цифр. Какое выражение удовлетворяет данному условию?
 - 1) $\frac{10a+b}{a+b}$ 2) $\frac{a-b}{a+b}$ 3) $\frac{10a-b}{a-b}$ 4) $\frac{10a+b}{a-b}$

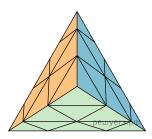
- **23.** Решите уравнение: $4^{\log_8(2x-2)} \cdot 2^{-\log_2 \sqrt[3]{2x-2}} = 2\sqrt[3]{2}$.
- **24.** Решите неравенство $\sqrt{6x-5} > -\sqrt{5}$.

- 1) $\left(-\infty; \frac{5}{6}\right)$. 2) $\left(\frac{5}{3}; +\infty\right)$. 3) нет решений 4) $\left[\frac{5}{6}; +\infty\right)$.
- **25.** Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = \frac{2}{x^2 3x}$, $x_0 = 4$.

- 1) $y = -\frac{1}{8}x + 3$ 2) $y = -\frac{5}{8}x + 3$ 3) $y = -\frac{5}{8}x + 1$ 4) $y = -\frac{3}{8}x + 3$

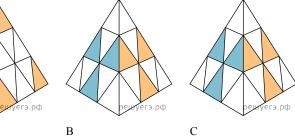
Торт в форме цилиндра. Высота торта 20 см. Диаметр 30 см. Средняя плотность торта 0,4 г/см³.

- 26. Чтобы разрезать торт провели пять диаметров и получили?
 - 1) 12 кусочков
- 2) 6 кусочков
- 3) 10 кусочков
- 4) 9 кусочков


В кабинете математики имеется шкаф с тремя полками для моделей объемных разноцветных фигур — пирамид, шара, параллелепипеда, конуса, призмы, тетраэдра, цилиндра общим количеством 14 штук (по две модели каждого вида).

- 27. Учитель расставил на одной полке шкафа по одной модели фигур каждого вида. Рядом стоящая ученица заметила, что расставить эти фигуры на полке можно в различном порядке. Сколько таких вариантов размещения существует?
 - 1) 120
- 2) 320
- 3) 5040
- 4) 1400

Семейная пара собирается в поездку на поезде. В составе поезда имеются следующие типы вагонов:


- 1) СВ купе на 2 человека;
- 2) Купе купе на 4 человека;
- 3) Плацкарт А вагон на 36 человек; 4) Плацкарт В вагон на 54 человека;
- 5) Общий вагон вагон на 81 человек.
- 28. Определите, сколькими способами пара сможет разместиться в вагоне типа Плацкарт В.
 - 1) 812
- 2) 1260
- 3) 3072
- 4) 2862

Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: A — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

Α

- 29. Какой высоты должна быть упаковка для Пирамидки?
 - 1) $3\sqrt{3}$ cm
- 2) $5\sqrt{6}$ cm
- 3) $3\sqrt{2}$ cm
- 4) $3\sqrt{6}$ cm

В кабинете математики имеется шкаф с тремя полками для моделей объемных разноцветных фигур — пирамид, шара, параллелепипеда, конуса, призмы, тетраэдра, цилиндра общим количеством 14 штук (по две модели каждого вида).

- 30. Какова вероятность размещения на первой полке двух тел вращения (округлите до сотых)?
 - 1) 0,45
- 2) 0,63
- 3) 0,24
- 4) 0,16
- **31.** Функция задана уравнением $y = \cos x 4$. Установите соответствие между наибольшим и наименьшим значениями функции и их числовыми значениями.
 - А) Наибольшее значение функции Б) Наименьшее значение функции

	Вариант № 35805
32. Сечение шара, удалённое на 1 от центра, имеет площадь 8π . Установите соответствие между радиусом шара, его объемом и их числовыми значениями.	
А) Радиус шара	1) 27π
Б) Объем шара	2) 3
	3) 2
	4) 36π
33. Найдите два натуральных числа x и y , $x > y$, если известно, что сумма чисел x и y равна 7, а произведение разности этих чисел на разность квадратов этих чисел равно 175.	
А) Число x принадлежит промежутку	1) [3; 4]
Б) Число у принадлежит промежутку	2) (5; 7)
	3) [1; 2)
	4) (2; 3)
	, (, -)

34. Даны уравнения $\frac{x^2-6x+5}{x-1}=0$ и $(x^2-4)\sqrt{x-1}=0$. Установите соответствия:

- A) Каждое число является корнем хотя бы одного из1) 0, 3, 4уравнений2) 5, 2, 8Б) Ни одно из чисел не является корнем уравнений3) -1, 0, 24) 5, 1, 2
- **35.** Дана геометрическая прогрессия (b_n) , у которой $b_5 = -14$, $b_8 = 112$. Установите соответствие между выражением и его числовым значением.

A)
$$q$$
 1) -2 2) 5 3) -1 4) -0.875

36. Упростите $\log_7 \log_7 \sqrt{7\sqrt{7\sqrt{7}}}$.

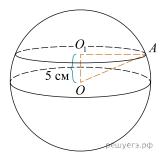
1)
$$\frac{7}{8}$$
 2) $-\frac{8}{7}$ 3) $7\sqrt{7}$ 4) $\log_7\left(\frac{7}{8}\right)$ 5) -78 6) $-\log_7\left(\frac{8}{7}\right)$

37. Значение выражения $12 \sin \frac{9\pi}{8} \cos \frac{9\pi}{8}$ равно

1) 0 2)
$$3\sqrt{2}$$
 3) $6\sqrt{2}$ 4) $-6\sqrt{2}$ 5) $-3\sqrt{2}$ 6) $3\sqrt{3}$

38. Укажите первые пять членов последовательности, составленной из значений функции $y = \log_{\sqrt{2}} x^{\sqrt{2}}$, при x > 1, где x — число, являющееся степенью числа 2.

1) 2;
$$2\sqrt{2}$$
; 4; $4\sqrt{2}$: 8 2) $\sqrt{2}$; $2\sqrt{2}$; 4; $4\sqrt{2}$; 8 3) $\sqrt{2}$; 2; $2\sqrt{2}$; $4\sqrt{2}$; $8\sqrt{2}$ 4) $2\sqrt{2}$; $4\sqrt{2}$; $6\sqrt{2}$; $8\sqrt{2}$; $10\sqrt{2}$ 5) 1; $\sqrt{2}$; 2; $2\sqrt{2}$; 4 6) $\sqrt{2}$; $2\sqrt{2}$; $4\sqrt{2}$; $8\sqrt{2}$; $16\sqrt{2}$


39. Решите систему, содержащую иррациональное уравнение

$$\begin{cases} \sqrt{x+y-1} = 1, \\ \sqrt{x-y+2} = 2y-2. \end{cases}$$

В ответе укажите значение выражения x + y.

1)
$$\frac{3}{2}$$
 2) $\frac{1}{2}$ 3) 4 4) $\left(\frac{1}{2}\right)^{-1}$ 5) 2 6) $\sqrt[4]{16}$

40. В сфере, площадь поверхности которой равна 2028 см 2 (принять $\pi \approx 3$), на расстоянии OO_1 от ее центра проведено сечение. Значение площади этого сечения имеет делители

1) 22 2) 16 3) 3 4) 14 5) 5 6) 36