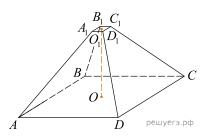

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


- 1. Сократите дробь: $\frac{\sqrt{70} \sqrt{30}}{\sqrt{35} \sqrt{15}}$. 1) $\sqrt{7}$ 2) $\sqrt{5}$ 3) $\sqrt{11}$ 4) $\sqrt{2}$
- **2.** Упростите выражение $\frac{6c-c^2}{1-c}$: $\frac{c^2}{1-c}$. и найдите его значение при c=1,2. 1) 1 2) 4 3) 2 4) 1.2
- 3. Найдите значение выражения: $\left(\cos\frac{5\pi}{12} + \cos\frac{\pi}{12}\right) \cdot \left(\sin\frac{\pi}{12} \sin\frac{5\pi}{12}\right)$. 1) $-\frac{\sqrt{3}}{2}$ 2) 1 3) $\frac{\sqrt{2}}{2}$ 4) $\sqrt{3}$
- **4.** Определите степень многочлена: $7x^4y^5 + 3y^6 5xy^7 2$. 1) 6 2) 5 3) 9 4) 7
- **5.** Уравнение $|x^2 + x 3| = x$ имеет иррациональный корень
 - 1) $\sqrt{2}$ 2) $\sqrt{5}$ 3) $-\sqrt{5}$ 4) $\sqrt{3}$
- 6. Решите систему уравнений: $\begin{cases} 4x + \frac{9}{y} = 21, \\ 17 3x = \frac{18}{y}. \end{cases}$ 1) (14; 5) 2) (0; 18) 3) (5; 9) 4) (-15; -11)
- 7. Найдите неопределённый интеграл $\int \left(\left(\frac{3}{5} \right)^{4x-2} 2^{3x-4} 5^{1-5x} \right) dx$.

- 1) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 5} + C$ 2) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} \frac{2^{3x-4}}{\ln 2} + \frac{5^{-5x}}{\ln 5} + C$ 3) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 5} + C$ 4) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{2\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 3} + C$
- **8.** Радиус верхнего основания усечённого конуса равен 2 м, высота 6 м. Найдите радиус нижнего основания, если его объём равен 38π м³.
 - 1) 4 m 2) 2 m 3) 3 m 4) 1 m
 - 9. Решите систему неравенств: $\begin{cases} x(2x-4)(x+5) \geqslant 0, \\ x^2 3x < 0. \end{cases}$ 1) (2: 3) 2) [2: 3) 3) [0: 3] 4) (2: 3)
- **10.** Из предложенных ниже вариантов найдите серию, содержащую все решения уравнения $\sin 3x + \cos 3x = 0$.
 - 1) $-\frac{\pi}{12} + 3\pi n, n \in \mathbb{Z}$ 2) $-\frac{\pi}{12} + \frac{\pi n}{3}, n \in \mathbb{Z}$ 3) $-\frac{\pi}{12} + 2\pi n, n \in \mathbb{Z}$ 4) $\frac{\pi}{12} + \frac{\pi n}{3}, n \in \mathbb{Z}$
 - **11.** Найдите первообразную функции $f(x) = (4x^3 3x^6)$, проходящую через точку (3; 4).
 - 1) $x^8 \frac{3}{7}x^7 + \frac{2726}{7}$ 2) $x^4 \frac{3}{7}x^7$ 3) $x^2 \frac{2}{5}x^7 \frac{2726}{7}$ 4) $x^4 \frac{3}{7}x^7 + \frac{6022}{7}$.
 - **12.** Решите неравенство: $\frac{3x+9}{3-x} \geqslant 0$.
 - 1) $(-\infty; -3) \cup [3; +\infty)$ 2) [-3; 3) 3) (-3; 3) 4) (-3; 3]
 - 13. По данным рисунка найдите значение х.

1) 36 2) 19 3) 18 4) 12

- 14. Вычислите интеграл $\int_{0}^{\frac{\pi}{6}} (\sin 5x \cos 4x \cos 5x \sin 4x) dx$
 - 1) 0 2) 1 3) $\frac{\sqrt{3}}{2}$ 4) $1 \frac{\sqrt{3}}{2}$
- 15. Найдите объем правильной четырехугольной усеченной пирамиды, если стороны ее основания 1 см и 9 см. а высота 6 см.

- 1) 162 cm^3 2) 182 cm^3 3) 152 cm^3
- 4) 180 cm^3
- **16.** Решите дробно-иррациональное уравнение $2\sqrt{x-3} \frac{1}{\sqrt{x-3}} = 1$.
 - 1) 4 2) 1 3) 0 4) 2
- 17. Решите систему неравенств: $\begin{cases} 3^{x-2} < \frac{3}{9^{\frac{1}{x}}}, \\ 6^{x+2} > 2^{x^2} \cdot 3^{x+2}. \end{cases}$
 - 1) $(-1;0) \cup (1;2)$ 2) [-3;3) 3) $(\frac{1}{2};3)$ 4) $[3;+\infty)$
- **18.** Найдите площадь фигуры, ограниченной прямой параболой: $y = 3x^2 - 3x + 3$, y = 9x - 2, x = 0.5, x = 1.
 - 1) $\frac{28\sqrt{21}}{11}$ 2) $-\frac{9}{8}$ 3) $\frac{28\sqrt{23}}{9}$ 4) $\frac{9}{8}$
- 19. Внутренний угол правильного многоугольника равен 172°. Количество сторон данного многоугольника равно
 - 1) 24 2) 45 3) 18 4) 36

- 20. Сумма первых трех членов арифметической прогрессии равна 27, а сумма последних трех членов данной прогрессии равна 45. Сколько членов в заданной арифметической прогрессии, если ее первый член равен 7?
 - 1) 3
- 21. Вектор \overrightarrow{AB} с началом в точке A(2; -4) имеет координаты (6; -5). Найдите координаты точки B.

- 1) (4: -9)2) (9: -10)3)(8;-9)4)(8;-7)
- 22. Некоторое двузначное число разделили на разность его цифр. Какое выражение удовлетворяет данному условию?
 - 1) $\frac{10a+b}{a+b}$ 2) $\frac{a-b}{a+b}$ 3) $\frac{10a-b}{a-b}$ 4) $\frac{10a+b}{a-b}$
- **23.** Пусть x_0 наибольший корень уравнения $\log_9^2\left(\frac{x}{81}\right) + \log_9 x 22 = 0$, тогда значение выражения $3\sqrt[3]{x_0}$ равно ...
 - 1)9 2) 81 3) 169 4) 243
 - **24.** Решите неравенство $2^{x} + 2^{x+3} \ge 144$.

1)
$$[34,5; +\infty)$$
 2) $[4; +\infty)$ 3) $(-\infty; 4]$ 4) $(-\infty; 4,5]$

3)
$$(-\infty; 4]$$
 4) $(-\infty; 4, 3)$

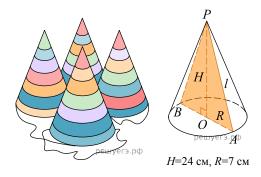
25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = 2\sqrt[5]{x} - 5$, $x_0 = 1$.

1)
$$y = \frac{2}{5}x - \frac{17}{5}$$
 2) $y = \frac{2}{5}x + \frac{17}{5}$ 3) $y = \frac{2}{5}x - 3$ 4) $y = \frac{1}{5}x - \frac{17}{5}$

В крестьянском хозяйстве взвесили клубни картофеля. Массы клубней (в граммах) приведены в таблице.

60	59
57	59
56	58
61	61
58	59

26. Определите объем выборки.


1) 15

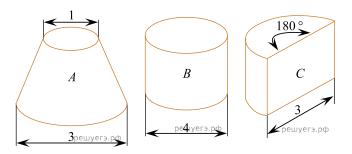
2) 12

3) 16

4) 10

Айша изготовила конусообразный головной убор — колпак (см. рис.).

27. Найдите площадь боковой поверхности конуса, $\pi \approx 3$.


1) 525 cm^2

 $2) 500 \text{ cm}^2$

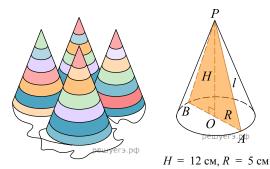
3) 540 cm^2

4) 532 cm^2

Высота каждого из трех резервуаров A, B и C равна 2. При расчетах принять $\pi \approx 3$.

28. Расположите резервуары по возрастанию их объемов, если радиусы резервуары увеличить на 1.

1) BAC


2) CAB

3) BCA

4) ABC

Конус

Слово «конус» греческого происхождения и означает — «сосновая шишка».

Артем на свой день рождения решил пригласить школьных друзей: Аружан, Айшу, Данила и Мираса. Приготовил для себя и своих гостей конусообразный праздничный головной убор — колпак (для приготовления одного колпака понадобится: 1 лист бумаги формата A4 (29,7 × 21 см), резинку длиной 8 см и ленты разных цветов).

29. Найдите, сколько нужно ленты, чтобы обвить края всех колпаков блестящей лентой шириной 1 см ($\pi \approx 3$).

1) 110 см

2) 150 см

3) 100 см

4) 130 см

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0.7 м \times 1.4 м. На швы и обрезки тратится 10 % от площади крыши.

- **30.** Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?
 - 1) в 24 раза 2) в 64 раза 3) в 13 раз 4) в 16 раз
- **31.** Квадратичная функция задана уравнением $y = x^2 + 2x 3$. Установите соответствие между нулями функции и координатами вершины параболы.

А) Нули функции	1) (-1; -4)
Б) Координаты вершины параболы	2) {3; -1}
	3) {-3; 1}
	4) (1; 4)

32. Окружность описана около прямоугольного треугольника, катеты которого равны 6 и 8. Установите соответствие между площадью треугольника, радиусом окружности и промежутками, которым принадлежат их числовые значения.

А) Площадь треугольника	1) (40; 50)
Б) Радиус описанной окружности	2) (21; 27)
	3) [5; 8)
	4) (11;15]

33. Представьте в виде многочлена выражение $(x+1)(x+4)(x+2)^2$. Установите соответствия между коэффициентом при x^3 , суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

A) Коэффициент при x^3	1) (30; 60)
Б) Сумма коэффициентов многочлена	2) (8; 12]
	3) [70; 90]
	4) [4; 9)

34. Даны уравнения $3^{x^2-2x} = 27$ и $\sqrt{x+1} + 1 = x$. Установите соответствия:

А) Число является корнем первого урав-	1) -1
нения, но не является корнем второго	2) 2
уравнения	3) 3
Б) Число является корнем обоих уравне-	4) 1
ний	

35. Дана геометрическая прогрессия (b_n) , где $b_3=10$ и $b_6=80$. Установите соответствие между выражением и его числовым значением.

A)
$$S_5$$
 1) 67,5
B) 19 · b_1 2) 57,5
3) 47,5
4) 77,5

36. Вычислите $\log_{\frac{1}{6}} \sqrt{\log_{\sqrt{2}} 8}$.

1) 1 2) 0,5 3) 0 4)
$$-0,5$$
 5) -1 6) $-\frac{1}{2}$

37. Найдите значение выражения tg 225° cos 330° ctg 120° sin 240°.

1)
$$-\frac{\sqrt{3}}{4}$$
 2) $\frac{3\sqrt{3}}{4}$ 3) $\frac{3\sqrt{3}}{8}$ 4) $-\frac{3\sqrt{3}}{8}$ 5) $-\frac{3\sqrt{3}}{4}$ 6) $\frac{\sqrt{3}}{4}$

38. Даны три числа, образующие геометрическую прогрессию. Если от первого числа вычесть 12, то эти числа образуют арифметическую прогрессию, которые в сумме равны большему члену геометрической прогрессии. Найдите эти числа и выберите из предложенных вариантов числа, соответствующие геометрической или арифметической прогрессиям

39. Решите систему

$$\begin{cases} 9 \cdot 5^{x} + 7 \cdot 2^{x+y} = 457, \\ 6 \cdot 5^{x} - 14 \cdot 2^{x+y} = -890. \end{cases}$$

В ответе укажите значение выражения 2x + y.

1)
$$\frac{1}{6}$$
 2) $\sqrt{36}$ 3) 7 4) 0 5) $\sqrt{49}$ 6) 6

40. В основании прямоугольного параллелепипеда лежит прямоугольник со сторонами 3 и 4. Высота параллелепипеда 5. Найдите площадь диагонального сечения прямоугольного параллелепипеда

1) 20 2)
$$4\sqrt{25}$$
 3) $\sqrt{625}$ 4) $\sqrt{400}$ 5) 25 6) $6\sqrt{25}$