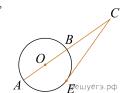
Реальная версия ЕНТ по математике 2021 года. Вариант 4249

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


- **1.** Найдите значение выражения: $2\cos^2 15^\circ 2\sin^2 15^\circ$.
 - 1) $\frac{\sqrt{3}}{2}$ 2) $\frac{\sqrt{2}}{2}$ 3) $\sqrt{3}$ 4) 1 5) 2
- **2.** Решите уравнение: $\sin\left(2x + \frac{\pi}{4}\right) = 1$.
- 1) $-\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$ 2) $2\pi k, k \in \mathbb{Z}$ 3) $\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$ 4) $\frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$ 5) $\pm \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$
- **3.** Решите систему уравнений: $\begin{cases} 2x 3y = -1, \\ \frac{y}{x} = 0,75. \end{cases}$

- 4. Столяр изготавливает 58 деталей в час, за смену 348 деталей. Сколько деталей изготовит столяр за смену. если будет изготавливать 75 леталей в час?
 - 1) 450 деталей
- 2) 400 деталей
- 3) 420 деталей
- 4) 350 деталей 5) 500 деталей
- **5.** Найдите наименьшее решение неравенства $5^{3x-1} \ge 25$.

- 2) 1 3) -2 4) 2 5) -1
- **6.** Решите систему неравенств: $\begin{cases} \sqrt{3x+1} \geqslant 1, \\ \sqrt{2x-1} < 3. \end{cases}$
- 1) (-1; 5) 2) $\left[\frac{1}{2}; 5\right)$ 3) $(-\infty; 2)$ 4) $\left[-\frac{1}{2}; 3\right)$ 5) (-1; 3)
- 7. Первый член арифметической прогрессии равен 5, разность прогрессии d = -7. Найдите количество членов данной арифметической прогрессии, если $a_n = -163$.
 - 1) 36 2) 41

- 8. Вычислите интеграл: $\int\limits_{-5}^{1}{(x+2)^2\,dx}.$ 1) 23 2) -10 3) 15 4) 18

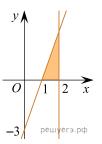
- 9. К окружности проведена секущая СА, CB = AB = 8. Длина касательной CE равна

1)
$$8\sqrt{3}$$
 2) 12 3) $8\sqrt{2}$ 4) $6\sqrt{2}$ 5) 16

10. Найдите объём куба, если площадь его полной поверхности равна 72 cm^2 .

1) 216 cm³. 2)
$$24\sqrt{3}$$
 cm³ 3) 126 cm³. 4) $16\sqrt{3}$ cm³ 5) $12\sqrt{3}$ cm³

11. Найдите первый положительный член арифметической прогрессии: -20.3; -18.7; ...


12. Число n составляет p% от числа a. Число a равно

1)
$$a = \frac{100p}{n}$$
 2) $a = \frac{100}{np}$ 3) $a = \frac{100n}{2p}$ 4) $a = \frac{100p}{2n}$ 5) $a = \frac{100n}{p}$

13. Найдите сумму (x+y), где (x;y) — решение системы уравнений $\begin{cases} 3^{x+y}+81^x=82,\\ 3y^2-x=2, \end{cases}$ причем y<0.

14. Найдите площадь заштрихованной фигуры:

15. Дана система уравнений

$$\begin{cases} 2^{x} \cdot 4^{y} = 32, \\ \log_{3}(x - y) = \log_{3} 2, \end{cases}$$

где (x; y) — решение данной системы уравнений. Сумма (x + y) принадлежит промежутку?

1)
$$(0; 8)$$
 2) $(10; 24)$ 3) $(5; 12)$ 4) $(-1; 6)$ 5) $(5; 7)$ 6) $(-8; 4)$ 7) $(0; 10)$ 8) $(-\infty; 2)$

16. Значение произведения

$$\frac{x^2 + 3x + 2xy + 6y}{2x^2 + xy + 6x + 3y} \cdot \frac{6x^2 + 2x + 3xy + y}{xy - 2x + 2y^2 - 4y}$$

равно

1)
$$\frac{3x+1}{y-2}$$
 2) $\frac{2x+y}{x+21}$ 3) $\frac{x+3}{2x+y}$ 4) $\frac{x+2y}{x+3}$ 5) $\frac{3x+1}{x-2y}$

17. Даны векторы $\vec{a}(3;2)$ и $\vec{b}(0;-1)$. Найдите абсолютную величину вектора $(5\vec{a}+10\vec{b})$.

18. Пройдя 12 км, лыжник увеличил скорость на 25% и проехал еще 24 км. Определите первоначальную скорость лыжника (в км/ч), если первую часть пути он прошел на 1 час 36 минут быстрее второй.
1) 4,25 2) 5 3) 6,2 4) 4,5 5) 5,6
19. Решите систему неравенств: $ \begin{cases} \sqrt{x-6} \cdot \sqrt{x-12} < x-1, \\ 2x-3 < 33. \end{cases} $
1) (12; 18) 2) [12; 18) 3) [12; 20) 4) [12; 18] 5) (12; 18]
20. Определите длину диагонали осевого сечения цилиндра с радиусом 5 см и высотой 24 см.
1) 32 см 2) 26 см 3) 30 см 4) 27 см 5) 25 см
Перед отъездом в Японию, Самат приобрел для хранения важных документов и ценных вещей кодовый сейф с шестизначным кодом, состоящим из цифр 1, 2, 3 и букв <i>M</i> , <i>N</i> , <i>K</i> . 21. Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр и букв?
1) 120 2) 36 3) 720 4) 5040 5) 480
22. Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр так, чтобы буква M была первой? 1) 5040 2) 36 3) 720 4) 120 5) 480
23. Сколько вариантов возможны при условии, что цифра 1 не должна быть первой?
1) 120 2) 400 3) 240 4) 720 5) 600
24. Сколько вариантов возможны при условии, что буква K не может стоять ни на первом месте, ни на шестом месте?
1) 480 2) 720 3) 120 4) 320 5) 240
25. Сколько шестизначных кодов для открывания сейфа возможны, если буквы M и K должны стоять рядом?
1) 720 2) 320 3) 120 4) 240 5) 480
26. Из нижеперечисленных ответов укажите те, 35% которых являются целым числом.
1) 50 2) 60 3) 40 4) 30 5) 90 6) 20 7) 70 8) 10
27. Корнями уравнения $\lg x(\lg x - 3) = -2(\lg 2 + \lg 5)$ являются?
1) 0 2) 200 3) 1 4) 20 5) 100 6) 2 7) 10 8) 1000
28. Найдите числовые промежутки, которым принадлежит значение выражения $(x-y)$, где $(x;\ y)$ — решение системы уравнений: $\begin{cases} 2x+y=0,\\ 25^x\cdot 2^y=0,4. \end{cases}$
1) $[2;4)$ 2) $(-\infty;2]$ 3) $(0;3)$ 4) $[3;4]$ 5) $[-1;4]$ 6) $(4;+\infty)$ 7) $(-3;3)$ 8) $(-4;4)$

29. За три часа бульдозер разровнял 3 км 2 асфальта. Из предложенных ответов укажите площадь, соответствующую его производительности в течение 5 часов.

1)
$$11 \text{ km}^2$$
 2) 9 km^2 3) 4 km^2 4) 7 km^2 5) 8 km^2 6) 10 km^2 7) 5 km^2 8) 6 km^2

30. Укажите интервалы, удовлетворяющие неравенству: $|x^2-1|-3\geqslant 0.$

- 1) $(-\infty; -2)$ 2) $(-\infty; 2)$ 3) $(-\infty; 2]$ 4) $(-\infty; -2]$ 5) $(2; +\infty)$ 6) $[2; +\infty)$ 7) (-2; 2) 8) $(-2; +\infty)$
- **31.** Найдите числовые промежутки, которым принадлежит значение выражения $\left(\frac{1}{x}+\frac{1}{y}\right)$, где $(x;\ y)$ решение системы уравнений $\begin{cases} x-y=4,\\ 3^x\cdot 3^y=27. \end{cases}$
 - 1) $(2; +\infty)$ 2) $\left(\frac{1}{2}; \frac{7}{2}\right)$ 3) (-3; 3) 4) (-0,5; 2)5) (-1; 2) 6) $(-\infty; 2]$ 7) [-2; 2] 8) $(-\infty; -2)$
 - 32. Укажите функцию, убывающую на всей области определения
 - 1) $y = 0.2^{x}$ 2) $y = \left(\frac{5}{13}\right)^{-x}$ 3) $y = 4, 3^{x}$ 4) $y = 5^{x}$ 5) $y = 3, 4^{x}$ 6) $y = \left(\frac{11}{13}\right)^{-x}$ 7) $y = \left(\frac{7}{2}\right)^{-x}$ 8) $y = 5^{-x}$
- **33.** Найдите меньшую высоту и площадь треугольника со сторонами 9 см, 12 см и 15 см.
 - 1) $\sqrt{6}$ cm 2) 7,2 cm 3) 6 cm² 4) 108 cm² 5) $4\sqrt{3}$ cm 6) 4 cm 7) 54 cm² 8) 9 cm
- **34.** Укажите первые пять членов последовательности, составленной из значений функции $y=\log_{\sqrt{2}}x^{\sqrt{2}},$ при x>1, где x число, являющееся степенью числа 2.
 - 1) $2; 2\sqrt{2}; 4; 4\sqrt{2} : 8$ 2) $\sqrt{2}; 2\sqrt{2}; 4; 4\sqrt{2}; 8$ 3) $\sqrt{2}; 2; 2\sqrt{2}; 4\sqrt{2}; 8\sqrt{2}$ 4) $2\sqrt{2}; 4\sqrt{2}; 6\sqrt{2}; 8\sqrt{2}; 10\sqrt{2}$ 5) $1; \sqrt{2}; 2; 2\sqrt{2}; 4$ 6) $\sqrt{2}; 2\sqrt{2}; 4\sqrt{2}; 8\sqrt{2}; 16\sqrt{2}$ 7) 1; 2; 4; 8; 16 8) $\sqrt{2}; 3\sqrt{2}; 4\sqrt{2}; 5\sqrt{2}; 6\sqrt{2}$
- **35.** Основанием прямой призмы служит равнобедренная трапеция ABCD со сторонами AB=CD=13 см, BC=11 см, AD=21 см. Площадь ее диагонального сечения равна 180 см 2 . Найдите площадь полной поверхности призмы.
 - 1) 522 cm^2 2) 256 cm^2 3) 144 cm^2 4) 1528 cm^2 5) 1728 cm^2 6) 129 cm^2 7) 192 cm^2 8) 906 cm^2