Реальная версия ЕНТ по математике 2021 года. Вариант 4255

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Найдите значение выражения: $2\cos^2 15^\circ - 2\sin^2 15^\circ$.

1)
$$\frac{\sqrt{3}}{2}$$
 2) $\frac{\sqrt{2}}{2}$ 3) $\sqrt{3}$ 4) 1 5) 2

2. Найдите корни уравнения: |2x - 6| = 10.

3. Решите систему уравнений: $\begin{cases} 2x - 3y = -1, \\ \frac{y}{x} = 0,75. \end{cases}$

$$\frac{1}{x} = 0.75.$$
1) (1; 5) 2) (0; -7) 3) (4; 3) 4) (3; 4) 5) (1; 3)

4. После наценки 35% цена изделия увеличилась на 196 тг. Найдите первоначальную цену изделия.

1)
$$630 \text{ Tr}$$
 2) 720 Tr 3) 840 Tr 4) 560 Tr 5) 540 Tr

5. Решите неравенство: $2\sin x - 1 > 0$.

1)
$$\left(\frac{\pi}{3} + \pi n; \frac{2\pi}{3} + m\right), n \in \mathbb{Z}$$
 2) $\left(\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right), n \in \mathbb{Z}$ 3) $\left(\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2\pi n\right), n \in \mathbb{Z}$ 4) $\left(\frac{\pi}{3} + 2\pi n; \frac{2\pi}{3} + 2\pi n\right), n \in \mathbb{Z}$ 5) $\left(-\frac{\pi}{6} + 2\pi n; \frac{\pi}{6} + 2\pi n\right), n \in \mathbb{Z}$

6. Решите систему неравенств: $\begin{cases} 6 + 2x \geqslant x - 2, \\ 4x - 5 \leqslant 7. \end{cases}$

1)
$$(-8;3)$$
 2) $(-8;-3]$ 3) $[-8;3]$ 4) $(-8;3]$ 5) $[3;+\infty)$

7. Первый член арифметической прогрессии равен 5, разность прогрессии d = -7. Найдите количество членов данной арифметической прогрессии, если $a_n = -163$.

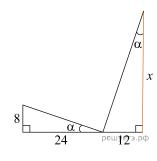
8. Вычислите интеграл: $\int_{-5}^{1} (x+2)^2 dx$.

$$^{-5}$$
 1) 23 2) -10 3) 15 4) 18 5) -15

9. Даны векторы: $\vec{a}(0;5)$ и $\vec{b}(7;-1)$. Косинус угла между векторами $(\vec{a}+\vec{b})$ и $(\vec{a}-\vec{b})$ равен?

1)
$$\frac{5}{\sqrt{221}}$$
 2) $\frac{\sqrt{2}}{10}$ 3) $\frac{\sqrt{2}}{5}$ 4) $-\frac{5}{\sqrt{221}}$ 5) $-\frac{\sqrt{3}}{10}$

10. Площадь боковой поверхности правильной треугольной призмы равна 108 см². Диагональ боковой грани наклонена к плоскости основания под углом 45°. Найдите объем данной призмы.


1)
$$16\sqrt{2}$$
 cm³ 2) 54 cm³ 3) 48 cm³ 4) $54\sqrt{3}$ cm³ 5) $48\sqrt{3}$ cm³

11. Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов равна 31. Найдите первый член прогрессии.

12. Найдите значение выражения:

$$tg^2 \frac{4\pi}{3} \sin \frac{5\pi}{2} - 2\cos \frac{\pi}{2} + ctg \frac{3\pi}{4}.$$
1) 2 2) 4 3) 0 4) 2,5 5) 3

- **13.** Найдите наименьшее целое решение системы неравенств: $\begin{cases} 5 \frac{2}{x+3} \geqslant 0, \\ \frac{4x-7}{2} < 2 \end{cases}$
- **14.** Найдите наименьшее значение функции $y = 7x \ln(x+2)^7$ на отрезке [-1,5;0].
- **15.** По данным рисунка найдите значение x.

1) 36 2) 19 3) 18 4) 12 5) 24

16. Упростите:

$$\frac{\left(b^{1,2}+\sqrt{2}\right)^3+\left(b^{1,2}-\sqrt{2}\right)^3}{b^{2,4}+6}.$$

- 1) $b^{2,4}$ 2) $b^{1,2}$ 3) $2b^{2,4}$ 4) $2b^{1,2}$ 5) $2b^{2,2}$

5)6

- **17.** Даны векторы $\vec{a}(3;2)$ и $\vec{b}(0;-1)$. Найдите абсолютную величину вектора $(5\vec{a}+10\vec{b})$.
 - 1) 15
- 2) 13
- 3) 13
- 4) 17
- 18. Сплав алюминия и цинка содержит 82% алюминия. После того, как добавили 22 кг цинка, содержание алюминия понизилось до 38%. Вычислите, сколько килограммов алюминия содержится в сплаве.
 - 1) 12,96

- 2) 17,2 3) 15,6 4) 15,58 5) 14,44
- **19.** Решите систему неравенств: $\begin{cases} \sqrt{x-6} \cdot \sqrt{x-12} < x-1, \\ 2x-3 < 33. \end{cases}$

 - 1) (12; 18) 2) [12; 18)
- 3) [12; 20) 4) [12; 18]
- 5) (12; 18]
- 20. Определите длину диагонали осевого сечения цилиндра с радиусом 5 см и высотой 24 см.
 - 1) 32 см
- 2) 26 см
- 3) 30 см
- 4) 27 cm
- 5) 25 cm

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0,7 м \times 1,4 м. На швы и обрезки тратится 10 % от площади крыши.

- 21. Чему равна площадь одного кровельного листа?
- 1) $1,6 \text{ m}^2$ 2) 0.98 m^2 3) 0.96 m^2 4) 9.8 m^2 5) 98 m^2

- 22. Чему равна площадь поверхности башни?
- 1) $3\sqrt{11}\pi \text{ m}^2$ 2) $12\pi \text{ m}^2$ 3) $3\sqrt{13}\pi \text{ m}^2$ 4) $3\sqrt{15}\pi \text{ m}^2$ 5) $5\sqrt{13}\pi \text{ m}^2$
- 23. Сколько нужно использовать материала (кровельного железа) для покрытия крыши с учетом швов и обрезок? (округлите до целых). $(\pi = 3, 14)$
- 1) 52 m^2 2) 45 m^2 3) 37 m^2 4) 25 m^2 5) 31 m^2

- 24. Какое количество листов понадобится для башни?
 - 1) 34
- 2) 30
- 3) 32 4) 38
 - 5) 40
- 25. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?
 - 1) в 24 раза
- 2) в 64 раза
- 3) в 13 раз
- 4) в 20 раз
- 5) в 16 раз
- **26.** Определите, каким промежуткам принадлежит значение выражения $2\sqrt{x}+1, \ x=\log_5 625.$

8) (3; 8)

27. Укажите выражения, значения которых равны корню уравнения: $\frac{7(a-6)}{4} = \frac{5(a+1)}{3} - 3(a+2)$.

1)
$$\left(\frac{1}{2}\right)^{-1}$$

1)
$$\left(\frac{1}{2}\right)^{-1}$$
 2) -2 3) 4 4) $\sqrt[4]{16}$ 5) $-\sqrt{16}$ 6) $\sqrt{8}$ 7) $\left(-\frac{1}{2}\right)^{-1}$ 8) $\sqrt{4}$

7)
$$\left(-\frac{1}{2}\right)^{-1}$$

28. Выберите из ниже предложенных ответов значения выражения $\frac{x}{y}$, где $(x_n; y_n)$ — решения системы уравнений

2)
$$\frac{3}{5}$$

1) 4 2)
$$\frac{3}{5}$$
 3) $\frac{1}{4}$ 4) $\frac{3}{2}$ 5) $-\frac{1}{2}$ 6) -2 7) $\frac{2}{3}$ 8) $\frac{5}{3}$

7)
$$\frac{2}{3}$$

29. За три часа бульдозер разровнял 3 км² асфальта. Из предложенных ответов укажите площадь, соответствующую его производительности в течение 5 часов.

1) 11
$$\text{km}^2$$
 2) 9 km^2 3) 4 km^2 4) 7 km^2 5) 8 km^2 6) 10 km^2 7) 5 km^2 8) 6 km^2

7)
$$5 \text{ km}^2$$

30. Решением неравенства $13x - 15 \le 2x^2$ является промежуток?

1)
$$\left(-\infty; \frac{3}{2}\right] \cup [5; +\infty]$$

1)
$$\left(-\infty; \frac{3}{2}\right] \cup \left[5; +\infty\right)$$
 2) $\left(-\infty; -5\right) \cup \left(\frac{3}{2}; +\infty\right)$ 3) $\left(-\infty; -\frac{3}{2}\right) \cup \left(5; +\infty\right)$ 4) $\left[\frac{3}{2}; 5\right]$

3)
$$\left(-\infty; -\frac{3}{2}\right) \cup$$

4)
$$\left[\frac{3}{2};5\right]$$

5)
$$(-\infty; -5] \cup \left[\frac{3}{2}; +\infty\right)$$
 6) $\left(-\infty; -\frac{3}{2}\right] \cup [5; +\infty)$ 7) $\left(\frac{3}{2}; 5\right)$ 8) $\left(-\infty; \frac{3}{2}\right) \cup (5; +\infty)$

6)
$$\left(-\infty; -\frac{3}{2}\right] \cup \left[5; +\infty\right]$$

$$7) \left(\frac{3}{2}; 5\right)$$

8)
$$\left(-\infty; \frac{3}{2}\right) \cup (5; +\infty)$$

31. Найдите числовые промежутки, которым принадлежит значение выражения $\left(\frac{1}{x} + \frac{1}{y}\right)$, где (x; y) — решение системы уравнений $\begin{cases} x - y = 4, \\ 3^x \cdot 3^y = 27. \end{cases}$

2)
$$\left(\frac{1}{2}, \frac{7}{2}\right)$$
 3) $(-3, 3)$ 4) $(-0, 5, 2)$ 5) $(-1, 2)$ 6) $(-\infty, 2]$ 7) $[-2, 2]$

32. Укажите функцию, убывающую на всей области определения

1)
$$y = 0.2^x$$
 2) $y = \left(\frac{5}{13}\right)^{-x}$ 3) $y = 4.3^x$ 4) $y = 5^x$ 5) $y = 3.4^x$ 6) $y = \left(\frac{11}{13}\right)^{-x}$ 7) $y = \left(\frac{7}{2}\right)^{-x}$

$$2) y = \left(\frac{5}{13}\right)^{\frac{1}{2}}$$

3)
$$y = 4,3^x$$

$$4) y = 5^x$$

5)
$$y = 3,4$$

$$6) y = \left(\frac{11}{13}\right)^{-1}$$

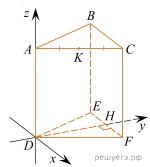
$$7) \ y = \left(\frac{7}{2}\right)^{-1}$$

33. Диаметр AB перпендикулярен хорде KM и пересекает ее в точке C, AC = 4 см, CB = 16 см. Выберите из ниже перечисленных ответов те числа, которые кратны значению длины хорды KM.

7) 12

34. Укажите первые пять членов последовательности, составленной из значений функции $y = \log_{\sqrt{2}} x^{\sqrt{2}}$, при x > 1, где x число, являющееся степенью числа 2.

1)
$$2; 2\sqrt{2}; 4; 4\sqrt{2} : 8$$
 2) $\sqrt{2}; 2\sqrt{2}; 4; 4\sqrt{2}; 8$ 3) $\sqrt{2}; 2; 2\sqrt{2}; 4\sqrt{2}; 8\sqrt{2}$ 4) $2\sqrt{2}; 4\sqrt{2}; 6\sqrt{2}; 8\sqrt{2}; 10\sqrt{2}$ 5) $1; \sqrt{2}; 2; 2\sqrt{2}; 4$ 6) $\sqrt{2}; 2\sqrt{2}; 4\sqrt{2}; 8\sqrt{2}; 16\sqrt{2}$ 7) $1; 2; 4; 8; 16$ 8) $\sqrt{2}; 3\sqrt{2}; 4\sqrt{2}; 5\sqrt{2}; 6\sqrt{2}$


2)
$$\sqrt{2}$$
; $2\sqrt{2}$; 4; $4\sqrt{2}$; 8

3)
$$\sqrt{2}$$
; 2; $2\sqrt{2}$; $4\sqrt{2}$; $8\sqrt{2}$

5)8

4)
$$2\sqrt{2}$$
: $4\sqrt{2}$: $6\sqrt{2}$: $8\sqrt{2}$: $10\sqrt{2}$

35. В правильной треугольной призме все ребра равны 1. Точка K — середина ребра AC. Найдите координаты векторов \overrightarrow{AK} и \overrightarrow{FB} .

1)
$$\left(\frac{1}{2}; 0; 1\right)$$

2)
$$\left(1; \frac{\sqrt{3}}{2}; -1\right)$$

1)
$$\left(\frac{1}{2};0;1\right)$$
 2) $\left(1;\frac{\sqrt{3}}{2};-1\right)$ 3) $\left(-1;-\frac{\sqrt{3}}{4};1\right)$ 4) $\left(\frac{1}{4};\frac{\sqrt{3}}{4};0\right)$ 5) $\left(\frac{1}{2};\frac{\sqrt{3}}{2};1\right)$

4)
$$\left(\frac{1}{4}; \frac{\sqrt{3}}{4}; 0\right)$$

5)
$$\left(\frac{1}{2}; \frac{\sqrt{3}}{2}; 1\right)$$

6)
$$\left(\frac{1}{4}; \frac{\sqrt{3}}{2}; 1\right)$$
 7) $(-1; 0; 1)$ 8) $\left(\frac{1}{4}; 0; 1\right)$