
При выполнении заданий с выбором ответа отметьте верные ответы.

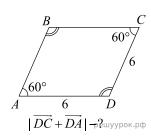
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Найдите значение выражения $\sqrt{8} \cdot \sqrt[3]{-7} \cdot \sqrt{32} \cdot \sqrt[3]{49} 7 \frac{\sqrt[5]{64}}{\sqrt[5]{-2}}$.
 - 1) 14 2) -112 3) -74 4) -98
- **2.** Упростите выражение $\frac{2c-4}{cd-2d}$ и найдите его значение при $c=0,5;\ d=5.$
 - 1) 1 2) 0.4 3) 0.2 4) 0.5
- 3. Найдите значение выражения $5\sin\frac{11\pi}{12}\cdot\cos\frac{11\pi}{12}$.
 - 1) 1 2) -0,5 3) 0,5 4) -1,25
- **4.** Разложите квадратный трехчлен $2x^2 + 8x + 6$ на множители.
 - 1) (2x+2)(x+3) 2) (x+2)(x+3) 3) (2x+3)(x+2) 4) $(2x+1)^2$
- **5.** Решите уравнение $\frac{2x^2}{x-2} = \frac{6-7x}{2-x}$.
- 1) 5,5 2) 3,5 3) 7,5 4) 1,5
- **6.** Найдите число A, если $A=x\cdot y$, где (x;y) является решением системы уравнений $\begin{cases} x^2y=9, \\ xy^2=3. \end{cases}$
 - 1)-3 2)-1 3)0 4)3
- **7.** Найдите неопределённый интеграл $\int \left(\left(\frac{3}{5} \right)^{4x-2} 2^{3x-4} 5^{1-5x} \right) dx$.
 - 1) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 5} + C$ 2) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} \frac{2^{3x-4}}{\ln 2} + \frac{5^{-5x}}{\ln 5} + C$ 3) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 5} + C$ 4) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{2\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 3} + C$
- **8.** Радиус верхнего основания усечённого конуса равен 2 м, высота 6 м. Найдите радиус нижнего основания, если его объём равен 38π м³.
 - 1) 4 m 2) 2 m 3) 3 m 4) 1 m
 - 9. Решите систему неравенств: $\begin{cases} (x-1)(x-8) > 0, \\ x^2 6x + 8 \geqslant 0. \end{cases}$
 - 1) $(-\infty; 1) \cup (8; +\infty)$ 2) $(-\infty; 2] \cup [4; +\infty)$ 3) $(-\infty; 2) \cup (4; +\infty)$ 4) [2; 4]
 - **10.** Решите уравнение: $\sin x \cos x = \frac{1}{2}$.
 - 1) $\pm \pi + 4\pi k$, $k \in \mathbb{Z}$ 2) $\pi + 4\pi k$, $k \in \mathbb{Z}$ 3) $2\pi + 4\pi k \in \mathbb{Z}$ 4) $\frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$
 - **11.** Из ниже перечисленных ответов, укажите одну из первообразных для функции $f(x) = \frac{4}{x}$, при x > 0.
 - 1) $F(x) = 4 \ln x$ 2) $F(x) = -4 \ln x$ 3) $F(x) = \frac{1}{4} \ln x$ 4) $F(x) = -\frac{1}{4} \ln x$
 - **12.** Решите неравенство: $\frac{8}{4x-2} < 0$.

- 1) $(-\infty; 1)$ 2) $\left(-\infty; \frac{1}{2}\right)$ 3) $\left(\frac{1}{2}; +\infty\right)$ 4) $\left(-\infty; \frac{1}{2}\right]$
- 13. Найдите площадь заштрихованной фигуры (см. рис).

- 1) 1,5 кв. ед. 2) 3 кв. ед. 3) 9 кв. ед.
- 4) 6 кв. ед.

14. Вычислите $\int_0^{\frac{\pi}{2}} \cos\left(2x + \frac{\pi}{3}\right) dx.$


1)
$$\frac{\sqrt{3}}{4}$$
 2) $\frac{1}{2}$ 3) $-\frac{\sqrt{3}}{4}$ 4) $-\frac{\sqrt{3}}{2}$

- 15. Из точки к плоскости проведены перпендикуляр и наклонна под углом 30° к ее проекции. Найдите длину наклонной, если длина перпендикуляра 12 см.
 - 1) 8 см
- 2) 6 cm 3) 24 cm
- **16.** Решите уравнение $\left(\frac{5}{6}\right)^{x-1} \cdot \left(\frac{4}{5}\right)^x = \frac{16}{45}$.
- **17.** Решите систему уравнений: $\begin{cases} x-y=2\pi,\\ \sin x+\cos y=1. \end{cases}$

1)
$$\left\{ \left(\pm \frac{5\pi}{4} + \frac{\pi}{4} + \pi(k+1), \pm \frac{\pi}{4} + \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
 2)
$$\left\{ \left(\pm \frac{3\pi}{4} + 2\pi k, \pm \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
 3)
$$\left\{ \left(\pm \frac{\pi}{4} - \frac{\pi}{4} + 2\pi k, \pm \frac{\pi}{4} - \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
 4)
$$\left\{ \left(\pm \frac{\pi}{4} + \frac{\pi}{4} + 2\pi (k+1), \pm \frac{\pi}{4} + \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$

- **18.** Найдите площадь фигуры, ограниченной двумя прямыми: $y = 2x, \ y = x, \ 0 \leqslant x \leqslant 3$.

- 19. Прямоугольник *ABCD* вписан в окружность. Дуга *BC* равна 40°. Меньший угол между диагоналями прямоугольника равен? 4) 40°
 - 1) 55° 2) 20°
- 3) 35°
- 20. Сумма семи первых членов геометрической прогрессии 48; 24; ... равна?
- 2) 95,25
- 3) 63,25
- 4) 94,50
- 21. Найдите длины сумм и разностей векторов по данным рисунка.

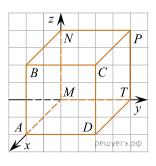
- 1) 6 2) 4 3) 3 4) $\sqrt{25}$
- **22.** Упростите выражение: $\left(x^{\frac{5}{12}}\right)^{1,2}: \left(x^{-\frac{1}{3}}\right)^{-1,5}$.
 - 1) 1 2) x^2 3) $x^{\frac{1}{2}}$ 4) $\frac{1}{x}$
- **23.** Решите уравнение: $\sqrt{2 \log_2 x} = \log_2 x$.

1) 2 2) 4 3)
$$\frac{3}{5}$$
 4) $\frac{1}{4}$

24. Решите неравенство: $2\sin x - 1 > 0$.

1)
$$\left(\frac{\pi}{3} + \pi n; \frac{2\pi}{3} + m\right), n \in \mathbb{Z}$$
 2) $\left(\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right), n \in \mathbb{Z}$ 3) $\left(\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2\pi n\right), n \in \mathbb{Z}$ 4) $\left(\frac{\pi}{3} + 2\pi n; \frac{2\pi}{3} + 2\pi n\right), n \in \mathbb{Z}$

25. Найти уравнение касательной к графику функции y=f(x) в точке с абсциссой x_0 , если $f(x)=4-2x-x^2, \ x_0=4.$


1)
$$y = -10x - 20$$
 2) $y = -10x + 40$ 3) $y = -10x + 20$ 4) $y = -10x + 60$

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0,7 м × 1,4 м. На швы и обрезки тратится 10 % от площади крыши.

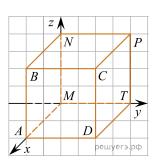
26. Чему равна площадь одного кровельного листа?

1)
$$1,6 \text{ m}^2$$
 2) $0,98 \text{ m}^2$ 3) $0,96 \text{ m}^2$ 4) $9,8 \text{ m}^2$

Для изготовления стальных дизайнерских шаров, завод получил заготовки в виде куба. Программная установка для обтачивания деталей требует ввода координат заготовки в трёхмерном пространстве. Программист вводит систему координат в вершину куба как показано на рисунке.

27. Длина ребра куба равна

Бросают одновременно два игральных кубика, на гранях которых расположены числа от 1 до 6.

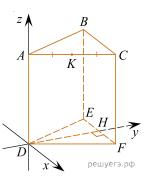

28. Сколькими способами может выпасть в сумме число 5?

В крестьянском хозяйстве взвесили клубни картофеля. Массы клубней (в граммах) приведены в таблице.

60	59
57	59
56	58
61	61
58	59

29. Найдите среднюю массу клубня картофеля.

Для изготовления стальных дизайнерских шаров, завод получил заготовки в виде куба. Программная установка для обтачивания деталей требует ввода координат заготовки в трёхмерном пространстве. Программист вводит систему координат в вершину куба как по-казано на рисунке.



30. Для изготовления детали в форме шара составьте его уравнение.

1)
$$(x+2)^2 + (y+2)^2 + (z+2)^2 = 4$$
 2) $(x+2)^2 + (y+2)^2 + (z+2)^2 = 2$ 3) $(x-2)^2 + (y-2)^2 + (z-2)^2 = 2$ 4) $(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$

31. Функция задана уравнением $y = \cos x - 4$. Установите соответствие ции и их числовыми значениями.	между наибольшим и наименьшим значениями функ-	
А) Наибольшее значение функцииБ) Наименьшее значение функции	1) -3 2) -5 3) -1 4) 3	
32. Вписанная окружность разделила гипотенузу треугольника на отрезки тов треугольника и числовыми промежутками, которым принадлежат их значе		
А) Больший катет треугольникаБ) Меньший катет треугольника	1) (3; 5) 2) (7; 9) 3) (6; 7) 4) [5; 6]	
33. Представьте в виде многочлена выражение $(x+1)^3$. Установите соответствия между коэффициентом при x , суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.		
А) Коэффициент при <i>х</i>Б) Сумма коэффициентов многочлена	1) [2; 3) 2) (1; 3) 3) (7; 8] 4) [3; 4)	
34. Даны уравнения $(x+1)(x-2) = (x-2)(5x-3)$ и $(x-1)\sqrt{x^2-2x}$	$\overline{x_1-3}=0$. Установите соответствия:	
A) Каждое число является корнем хотя бы одного из уравненийБ) Ни одно из чисел не является корнем уравнений	1) 1, 3, -3 2) 0, -3, 4 3) 2, 3, 7 4) -1, 2, 3	
35. У геометрической прогрессии (b_n) известно, что $b_1=2,\ q=-2.$ Установите соответствие между выражением и его числовым значением.		
А) b_5 Б) S_5	1) 32 2) 16 3) 11 4) 22	
36. Одно из двух натуральных чисел больше другого на 13. Найдите эти ч 1) 24 2) 6 3) 16 4) 8	•	
37. Найдите значение выражения $\frac{24}{\pi} \cdot \arccos\left(-\frac{\sqrt{2}}{2}\right)$.		
1) 18 2) 32 3) -9 4) -18	5) 9 6) -32	
38. Дана последовательность натуральных чисел, меньших 170, дающих остаток 1 при делении на 19. Выберите верные утверждения.		
1) Сумма всех чисел равна 690. 2) Таких чисел 8. 3) Сумма всех чисел равна 695. 4) Разность двух рядом стоящих чисел равна 18. 5) Разность между первым и последним числом равна 150. 6) Сумма всех чисел равна 692.		
39. Решите систему, приводимую к содержащей однородное уравнение		
$\begin{cases} x^2 + 3xy = 18, \\ 3y^2 + xy = 6. \end{cases}$		
В ответе укажите значение выражения $x_1y_1 - x_2y_2$.		
1) $\sqrt{25}$ 2) $\sqrt{0}$ 3) 0 4) $\frac{1}{3}$	5) $\frac{1}{2}$ 6) 3	

40. В правильной треугольной призме все ребра равны 1. Точка K — середина ребра AC. Найдите координаты векторов \overrightarrow{AK} и \overrightarrow{FB} .

- 1) $\left(\frac{1}{2};0;1\right)$ 2) $\left(1;\frac{\sqrt{3}}{2};-1\right)$ 3) $\left(\frac{1}{4};\frac{\sqrt{3}}{4};0\right)$ 4) $\left(\frac{1}{4};\frac{\sqrt{3}}{4};0\right)$ 5) (-1;0;1) 6) $\left(\frac{1}{4};\frac{\sqrt{3}}{2};1\right)$