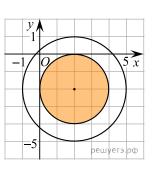

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Упростите выражение: $\sqrt[3]{25} \cdot \frac{\sqrt[5]{2}}{\sqrt[5]{-64}} \cdot \sqrt[3]{5}$. 1) -3 2) 2,5 3) -2,5 4) -3,5
- **2.** Упростите выражение $\frac{x^2-4}{4x^2}\cdot\frac{2x}{x+2}$ и найдите его значение при x=4.
- **3.** Найдите значение выражения: $\sin\left(\arcsin\frac{\sqrt{3}}{2}\right) + \arccos\left(-\frac{1}{2}\right) + \arctan\sqrt{3} \pi$.
 - 1) $-\frac{\pi}{2}$ 2) π 3) $-\frac{\sqrt{3}}{2}$ 4) $\frac{\sqrt{3}}{2}$
- **4.** Упростите выражение и запишите в стандартном виде: $(a+5)^2 5a(2-a)$.
 - 1) $-4a^2 + 25$ 2) $6a^2 + 25$ 3) $-a^2 + 25$ 4) $6a^2 25$


- **5.** Решите уравнение $16x^4 17x^2 + 1 = 0$.

- 1) $\left\{-2; -\frac{1}{4}; \frac{1}{4}; 2\right\}$ 2) $\left\{-1; 0; 1\right\}$ 3) $\left\{0\right\}$ 4) $\left\{-1; -\frac{1}{4}; \frac{1}{4}; 1\right\}$
- **6.** Найдите (x-y), если пара чисел (x;y) является решением системы уравнений: $\begin{cases} x^2y = 25, \\ xy^2 = 5. \end{cases}$
 - 1) 4 2) -5 3) -4
- 7. Найдите неопределённый интеграл $\int \left(\sin\left(x+\frac{\pi}{4}\right)+\cos\left(x-\frac{\pi}{3}\right)\right)dx$.
 - 1) $\sqrt{2}(\cos x \sin x) + C$ 2) $\frac{\sqrt{2}\sin x \sqrt{2}\cos x + \sin x \sqrt{3}\cos x}{2} + C$ 3) $\frac{\sin x + \cos x + \sin x \sqrt{3}\cos x}{2} + C$ 4) $\frac{\sqrt{2}\sin x \sqrt{2}\cos x + \sin x \cos x}{2} + C$
- 8. Радиус кругового сектора равен 6, а его угол равен 30°. Сектор свернут в коническую поверхность. Объем полученного конуса равен

1) $\frac{\sqrt{143}\pi}{4}$ 2) $\frac{\sqrt{143}\pi}{8}$ 3) $\frac{\sqrt{143}\pi}{6}$ 4) $\frac{\sqrt{143}\pi}{24}$

9. Укажите систему неравенств, которая задает множество точек, показанных штриховкой (1 клетка — 1 единица).

1)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$
 2)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$
 3)
$$\begin{cases} (x-2)^2 + (y-2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$$
 4)
$$\begin{cases} (x-2)^2 + (y+2)^2 \ge 9, \\ (x-2)^2 + (y+2)^2 \ge 9, \end{cases}$$

2)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4\\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$

3)
$$\begin{cases} (x-2)^2 + (y-2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$$

4)
$$\begin{cases} (x-2)^2 + (y+2)^2 \ge 4\\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$

10. Найдите корень уравнения $\sin 3x + \cos 3x = \sqrt{2}$, который принадлежит числовому интервалу (90°; 180°).

- 1) 135° 2) 255° 3) 175° 4) 190°

11. Укажите общий вид первообразной для функции $f(x) = \frac{1}{\sqrt{2x-3}}$ при $x \in \left(\frac{3}{2}; +\infty\right)$.

1)
$$F(x) = 2\sqrt{2x-3} + C$$

2)
$$F(x) = -2\sqrt{2x-3} + 6$$

1)
$$F(x) = 2\sqrt{2x-3} + C$$
 2) $F(x) = -2\sqrt{2x-3} + C$ 3) $F(x) = \frac{1}{2}\sqrt{2x-3} + C$ 4) $F(x) = \sqrt{2x-3} + C$

4)
$$F(x) = \sqrt{2x-3} + C$$

12. Из ниже предложенных вариантов чисел укажите число, которое является решением неравенства: $\frac{(x-3)^2(x+5)}{(x-7)} \geqslant 0.$

13. Стороны треугольника равны 4 см, 6 см и 8 см. Найдите стороны подобного ему треугольника, если коэффициент подобия равен 2. В ответе укажите сумму длин сторон.

- 1) 32 см
- 2) 36 cm 3) 30 cm 4) 40 cm

14. Найдите наименьшее целое число, удовлетворяющее неравенству: $\int\limits_0^x (2x+3)dx \leqslant 4$.

15. Площадь боковой поверхности правильной треугольной призмы равна 108 см². Диагональ боковой грани наклонена к плоскости основания под углом 45°. Найдите объем данной призмы.

- 1) $16\sqrt{2} \text{ cm}^3$ 2) 54 cm³
- 3) 48 cm^3 4) $54\sqrt{3} \text{ cm}^3$

16. Решите уравнение $\sqrt{4x+1} + \sqrt{3x-2} = 5$.

1)
$$3$$
 2) -2 3) -1 4) 2

17. Решите систему неравенств: $\begin{cases} \sqrt{2x-1} < x-2, \\ 5x+10 \geqslant 0. \end{cases}$

1)
$$\left(-\frac{1}{2};1\right] \cup (5;+\infty)$$
 2) $\left(\frac{1}{2};1\right] \cup (2;+\infty)$ 3) $[1;2]$ 4) $(5;+\infty)$

$$2) \left(\frac{1}{2}; 1\right] \cup (2; +\infty)$$

18. Вычислите объем фигуры, получаемой вращением вокруг оси Ox дуги кривой $y = \cos x, \ x \in \left[0; \frac{\pi}{2}\right]$.

1)
$$\frac{\pi}{2}$$
 2) π^3 3) $\frac{\pi}{3}$ 4) $\frac{\pi^2}{4}$

19. Сторона ромба равна 12. Косинус одного из его углов равен $\frac{2}{3}$. Площадь ромба равна

3)
$$24\sqrt{5}$$

2) 48 3)
$$24\sqrt{5}$$
 4) $48\sqrt{5}$

20. Сумма членов бесконечно убывающей геометрической прогрессии равна 9, а сумма квадратов членов прогрессии 40,5. Найдите знаменатель данной прогрессии.

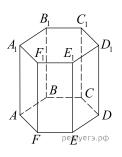
1)
$$-\frac{3}{2}$$
 2) $\frac{3}{2}$ 3) 2 4) $\frac{1}{3}$

- **21.** Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{CD} , если $\overrightarrow{AB} = (5;1;-6); \overrightarrow{CD} = (2;-7;-10).$
 - 1) 39 2) 65

- **22.** Упростите выражение $\sqrt{(x-2)^2} + 4$, при x < 2. $2)^2 + 4$, при x < 2. 1) x + 2 2) 6 - x 3) -x - 2 4) x + 6

- **23.** Решите уравнение: $\log_{\frac{1}{2}}(-2-3x) = \log_{\frac{1}{2}}(x^2-2)$.

- **24.** Решите неравенство: $\sqrt{3+x} \cdot \sqrt{3-x} > 0$.
- 1) (-3; 3) 2) (-1; 1) 3) нет решений 4) [-3; 3]
- **25.** Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = \sqrt[3]{x}, \ x_0 = -3$.


1)
$$y = \frac{\sqrt[3]{3}}{3}x - \frac{2\sqrt[3]{3}}{3}$$

2)
$$y = \frac{\sqrt[3]{3}}{9}x - \frac{2\sqrt[3]{3}}{3}$$

3)
$$y = \frac{\sqrt[3]{3}}{9}x - \frac{2\sqrt[3]{9}}{9}$$

1)
$$y = \frac{\sqrt[3]{3}}{3}x - \frac{2\sqrt[3]{3}}{3}$$
 2) $y = \frac{\sqrt[3]{3}}{9}x - \frac{2\sqrt[3]{3}}{3}$ 3) $y = \frac{\sqrt[3]{3}}{9}x - \frac{2\sqrt[3]{3}}{9}$ 4) $y = \frac{\sqrt[3]{3}}{9}x + \frac{2\sqrt[3]{3}}{3}$

Учитель дал домашнее практическое задание по геометрии. Сделать макет призмы и составить к ним задания. Самат подготовил макет правильной шестиугольной призмы со стороной основания равной 1, а боковое ребро 2 и составил следующие задания.

26. Найдите сумму векторов $\overrightarrow{AA_1}$ и $\overrightarrow{E_1D_1}$.

1)
$$\overline{D_1C}$$

2)
$$\overline{AE}$$

3)
$$\overline{B}$$

1)
$$\overrightarrow{D_1C}$$
 2) $\overrightarrow{AB_1}$ 3) \overrightarrow{BC} 4) $\overrightarrow{AF_1}$

Перед отъездом в Японию, Самат приобрел для хранения важных документов и ценных вещей кодовый сейф с шестизначным кодом, состоящим из цифр 1, 2, 3 и букв M, N, K.

- **27.** Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр так, чтобы буква M была первой?
 - 1) 5040
- 2) 36
- 3) 720
- 4) 120

Ученик запланировал ремонт в своей комнате длиной 4 м, шириной 5,25 м и высотой 3 м. Он решил профессионально составить смету, чтобы уложиться в бюджет. Для потолка ученик выбрал натяжные потолки с монтажом, на стены решил поклеить обои, а для ремонта пола выбрал ламинат, так как по рекомендациям он очень практичен и разнообразен.

Таблица цен на строительный материал в г. Нур-Султан

№	Наименование материала	Цена (тенге)
1	Обои (длина 12 м, ширина 1 м)	11 500
2	Натяжные потолки с монтажом (1 кв. м)	1200
3	Ламинат (1 кв. м)	6200
4	Галтели (длина 2,2 м)	1050
5	Клей для галтелей (тюбик 310 мл), 1 тюб на 20 м	900
6	Клей для обоев, 1 пачка на 25 м ₂	850
7	Плинтус (длина 2,2 м)	690
8	Клей для плинтуса (тюбик 310 мл), 1 тюб на 20 м	900

- 28. Какова стоимость ремонта потолка, если сделали натяжные потолки и наклеили галтели?
 - 1) 29 500 тг
- 2) 34 950 тг 3) 34 500 тг
- 4) 35 550 TF

Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз, Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

29. Используя данные диаграммы, определите, во сколько раз больше нефти добывается супергигантом «Тенгизшевройл» по сравнению с «Мангистаумунайказ» (ответ запишите в виде обыкновенной дроби)

1)
$$6\frac{6}{7}$$
 2) $4\frac{32}{71}$ 3) $2\frac{2}{7}$ 4) $3\frac{5}{71}$

30. Найдите разницу градусной меры сектора, соответствующего объему добычи нефти супергигантом «Тенгизшевройл» и градусной меры сектора, соответствующего объему добычи нефти НКОК (Кашаган) на круговой диаграмме (ответ округлите до целых).

31. Функция задана уравнением $y = \sqrt{9 - x^2}$. Установите соответствия:

А) Область определения функцииБ) Нули функции

1)
$$\{3\}$$

2) $[-3; 3]$
3) $(-\infty; -3) \cup (3; +\infty)$
4) $\{-3; 3\}$

32. Окружность вписана в равнобедренный треугольник, боковая сторона которого равна 5, а основание — 6. Установите соответствие между площадью треугольника, радиусом вписанной окружности и их числовыми значениями.

А) Площадь треугольника	1) 3
Б) Радиус вписанной окружности	2) 6
	3) 1,5
	4) 12

33. Представьте в виде многочлена выражение $(x+1)(x+4)(x+2)^2$. Установите соответствия между коэффициентом при x^3 , суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

A) Коэффициент при x^3	1) (30; 60)
Б) Сумма коэффициентов многочлена	2) (8; 12]
	3) [70; 90]
	4) [4; 9)

34. Даны уравнения $3^{x^2} = 27 \cdot 9^x$ и $\frac{x^2 - 7x + 10}{x - 5} = 0$. Установите соответствия:

А) Каждое число является корнем хотя бы одного из	1) 3, 1, 7
уравнений	2) 2, 5, 0
Б) Ни одно из чисел не является корнем уравнений	3) 0, 1, 4
	4)3,-1,2

35. В арифметической прогрессии (a_n) известно,	что $a_2=1$ и $a_4=9$. Установите соответствие между выражением и его чис-
ловым значением.	
	1) =00

36. Если

$$S = \frac{0,536^2 - 0,464^2}{3,6^2 - 7,2 \cdot 2,4 + 2,4^2}$$

то верны следующие утверждения.

- 1) если S это 40% числа k, то k=0,1252) если S — это 50% числа k, то k = 0,1253) 40% от числа S равны 0,2 4) если S — это 0,2 числа n, то n=2,5 20% числа S меньше 40% числа S на 0,1 6) 40% от числа S равны 0,02 5) 20% числа *S* меньше 40% числа *S* на 0,1
- **37.** Значение выражения $2\cos^2 x + 2\sin^2 x(1 + tg^2 x) \cdot \cos^2 x + 4$ равно 2) 6 3) $\sqrt{25}$ 4) 8 1) 5 5)7
- 38. Найдите первый член арифметической прогрессии с разностью 8, если сумма первых 20 ее членов равна сумме следующих за ними 10 членов.
 - 4) 54 5) $\sqrt{1764}$ 6) $\sqrt{1296}$ 3) $\sqrt{1936}$ 1) 28 2) 44
 - **39.** Пара чисел (x; y) является решением системы уравнений

$$\begin{cases} \log_3(y-x) = 1, \\ 3^{x+1} \cdot 2^y = 4. \end{cases}$$

Найдите значение выражения $x^2 + 2y$.

1)
$$\sqrt{16}$$
 2) 1 3) 5 4) 4 5) $\sqrt{36}$ 6) 6

- 40. Стороны основания прямого параллелепипеда равны 6 дм и 8 дм. Известно, что меньшая диагональ параллелепипеда равна 9 дм, а одна из диагоналей основания равна 12 дм. Найдите боковое ребро и большую диагональ прямого параллелепипеда.
 - 1) $2\sqrt{14}$ дм 2) $3\sqrt{14}$ дм
- 3) 5 дм
- 4) 13 дм
- 5) 6 дм

6) 0

6) 8 дм