Реальная версия ЕНТ по математике 2021 года. Вариант 4261

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Приведите одночлен $7a^3c^3a^{-2}c^7$ к стандартному виду.

 - 1) $7ac^{-4}$ 2) $7a^{-5}c^{-10}$ 3) $7a^{-5}c^{10}$ 4) $7ac^{10}$ 5) $7a^{-6}c^{21}$

2. Решите уравнение: $4x^4 - 12x^2 + 9 = 0$.

1)
$$\sqrt{\frac{3}{2}} \, \text{u} - \sqrt{\frac{3}{2}}$$

1)
$$\sqrt{\frac{3}{2}}$$
 μ $-\sqrt{\frac{3}{2}}$ 2) $\sqrt{\frac{1}{2}}$ μ $-\sqrt{\frac{1}{2}}$ 3) $\frac{3}{4}$ μ $-\frac{3}{4}$ 4) $\frac{9}{16}$ μ $-\frac{9}{16}$ 5) $\frac{\sqrt{2}}{2}$ μ $-\frac{\sqrt{2}}{2}$

3)
$$\frac{3}{4}$$
 $\mu - \frac{3}{4}$

4)
$$\frac{9}{16}$$
 u $-\frac{9}{16}$

5)
$$\frac{\sqrt{2}}{2}$$
 и $-\frac{\sqrt{2}}{2}$

- **3.** Решите систему уравнений: $\begin{cases} 16-2x+3(y+4)=17,\\ 2(x-5)-2(y-5)-44=0. \end{cases}$

- 4) (-55; 33) 5) (55; -33)
- 4. Ящик с яблоками разделили на 4 части пропорционально числам 3; 5; 7; 8. Сколько кг яблок было в ящике, если масса третьей части 21 кг?
 - 1) 40 кг
- 2) 69 кг
- - 5) 37 Kr

- **5.** Решите неравенство: $3x + 5 \le 4x + 2$.

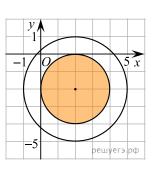
 - 1) $(-\infty; 2]$ 2) $(-\infty; 3)$ 3) $[3; +\infty)$ 4) $(3; +\infty)$ 5) $(2; +\infty)$

- **6.** Решите систему неравенств: $\begin{cases} \sqrt{x-1} < 3, \\ \sqrt{2x-4} > 0. \end{cases}$
- 1) (-1;2) 2) (2;10) 3) (1,6;2,5] 4) $[-\frac{1}{2};3)$ 5) (-1;3]
- 7. Первый член арифметической прогрессии равен 8, разность прогрессии равна 3. Найдите a_{25} .
 - 1) 77
- 2) 72
- 3) 85
- 4) 83
- 5)80

- **8.** Вычислите интеграл: $\int_{5}^{1} (x+2)^2 dx$.
- 2) -10
- 3) 15 4) 18
- 9. Внешний угол правильного двадцатиугольника равен?
 - 1) 15°
- 3) 20°
- 4) 10°
- 10. Из точки к плоскости проведены перпендикуляр и наклонна под углом 30° к ее проекции. Найдите длину наклонной, если длина перпендикуляра 12 см.
 - 1) 8 см
- 2) 6 см
- 3) 24 см
- 4) 12 см

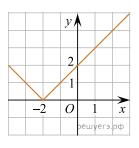
4) 0.5

5) 18°


- 11. Найдите первый положительный член арифметической прогрессии: -20,3; -18,7; ...
 - 1)0.4
- 2) 1
- 3) 0.2
- 5) 0,3

12. Число n составляет p% от числа a. Число a равно

1)
$$a = \frac{100p}{n}$$


1) $a = \frac{100p}{n}$ 2) $a = \frac{100}{np}$ 3) $a = \frac{100n}{2p}$ 4) $a = \frac{100p}{2n}$ 5) $a = \frac{100n}{p}$

13. Укажите систему неравенств, которая задает множество точек, показанных штриховкой (1 клетка — 1 единица).

1)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$
 2)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$
 3)
$$\begin{cases} (x-2)^2 + (y-2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$$
 4)
$$\begin{cases} (x-2)^2 + (y+2)^2 \ge 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$
 5)
$$\begin{cases} (x+2)^2 + (y-2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$

14. По графику найдите множество значений функции.

- 1) $(2; +\infty)$ 2) $(-\infty; +\infty)$ 3) $(0; +\infty)$ 4) $[0; +\infty)$ 5) $(-2; +\infty)$

15. В окружность с центром в точке O вписан треугольник ABC. Вершины треугольника разбивают окружность на дуги в отношении BC: CA: AB = 2:7:9. Больший угол треугольника COA равен?

- 1) 100°
- 2) 140°
 - 3) 138°
- 4) 124°
- 5) 155°

16. Упростите:

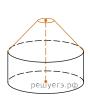
$$\frac{\left(b^{1,2}+\sqrt{2}\right)^3+\left(b^{1,2}-\sqrt{2}\right)^3}{b^{2,4}+6}.$$

- 1) $b^{2,4}$ 2) $b^{1,2}$ 3) $2b^{2,4}$ 4) $2b^{1,2}$ 5) $2b^{2,2}$

17. Даны векторы $\vec{a}(3;2)$ и $\vec{b}(0;-1)$. Найдите абсолютную величину вектора $(5\vec{a}+10\vec{b})$.

- 1) 15
- 2) 13 3) 13
 - 4) 17

18. Пройдя 12 км, лыжник увеличил скорость на 25% и проехал еще 24 км. Определите первоначальную скорость лыжника (в км/ч), если первую часть пути он прошел на 1 час 36 минут быстрее второй.


- 5) 5,6

19. Решите систему неравенств: $\begin{cases} 8^{x} + \left(\frac{1}{8}\right)^{x} > 2, \\ 2^{x^{2}} \leqslant 64 \cdot 2^{x}. \end{cases}$

20. В правильной треугольной пирамиде боковое ребро равно 4 см, а сторона основания — 6 см. Найдите объём пирамиды.

- 1) $5\sqrt{3}$ cm³ 2) $7\sqrt{3}$ cm³ 3) $6\sqrt{3}$ cm³ 4) $8\sqrt{3}$ cm³ 5) $9\sqrt{3}$ cm³

Цирковой шатер имеет форму цилиндра с поставленным на него усеченным конусом. Диаметр основания цилиндра равен 5 м, диаметр верхнего основания усеченного конуса равен 1 м. Высоты цилиндра и усеченного конуса равны 2 м.

21. Высота шатра равна:

- 22. Радиус нижнего основания шатра равен?
 - 1) 1,5 m 2) 2,5 m 3) 2 m 4) 1 m 5) 0,5 m
- **23.** Определите площадь боковой поверхности цилиндрической части шатра $(\pi \approx 3)$.

1)
$$30 \text{ m}^2$$
 2) 20 m^2 3) 15 m^2 4) 10 m^2 5) 25 m^2

24. Определите длину образующей верхней части шатра?

1)
$$2\sqrt{2}$$
 M 2) $3\sqrt{2}$ M 3) $\sqrt{3}$ M 4) $2\sqrt{3}$ M 5) $\sqrt{2}$ M

25. Боковая поверхность, верхней части шатра равна $(\pi \approx 3)$

1)
$$9\sqrt{2} \text{ m}^2$$
 2) $18\sqrt{3} \text{ m}^2$ 3) $9\sqrt{3} \text{ m}^2$ 4) $18\sqrt{2} \text{ m}^2$ 5) $6\sqrt{2} \text{ m}^2$

26. Определите, каким промежуткам принадлежит значение выражения $2\sqrt{x} + 1$, $x = \log_5 625$.

- **27.** Корнями уравнения $(x-1)(5^x-1)(x+1)(5^x+1)=0$ являются 1)-5 2)-1 3) 1 4) 3 5) -4 6) 0 7) 5 8) 4
- **28.** Выберите из ниже предложенных ответов значения выражения $\frac{x}{y}$, где $(x_n; y_n)$ решения системы уравнений $\begin{cases} x+y+xy=11, \\ x+y+1=xy. \end{cases}$

1) 4 2)
$$\frac{3}{5}$$
 3) $\frac{1}{4}$ 4) $\frac{3}{2}$ 5) $-\frac{1}{2}$ 6) -2 7) $\frac{2}{3}$ 8) $\frac{5}{3}$

29. К 4% солевому раствору массой 250 г добавили соль и получили 20% раствор. Масса добавленной соли равна

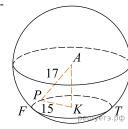
1)
$$40\ \Gamma$$
 2) $0,04\ \mathrm{kr}$ 3) $20\ \Gamma$ 4) $0,05\ \mathrm{kr}$ 5) $50\ \Gamma$ 6) $30\ \Gamma$ 7) $0,02\ \mathrm{kr}$ 8) $0,03\ \mathrm{kr}$

30. Какие из данных чисел не являются решениями неравенства 0,7x+8>0,8x-1?

31. Найдите отношение $\frac{x}{y}$, где (x;y) — решение системы уравнений: $\begin{cases} \lg(x-y) = 2, \\ \lg x = \lg 3 + \lg y. \end{cases}$

1)
$$3^0$$
 2) $\frac{1}{3}$ 3) $\left(\frac{1}{3}\right)^{-1}$ 4) 0,25 5) 2 6) 1 7) 3 8) 0,5

32. Упростите: $|\sqrt{7} + \sqrt{5} - 4| + |\sqrt{7} + \sqrt{5} - 5|$.


1)
$$2\sqrt{7} - 2\sqrt{5} - 1$$
 2) $2\sqrt{7}$ 3) 1 4) $2\sqrt{5} + 2\sqrt{7} + 1$ 5) 2 6) $2\sqrt{5} + 2\sqrt{7} - 1$ 7) $2\sqrt{5} - 2\sqrt{7} + 1$ 8) $2\sqrt{5} - 2\sqrt{7} - 1$

33. Диаметр AB перпендикулярен хорде KM и пересекает ее в точке C, AC = 4 см, CB = 16 см. Выберите из ниже перечисленных ответов те числа, которые кратны значению длины хорды KM.

34. Укажите первые пять членов последовательности, составленной из значений функции $y = \log_{\sqrt{2}} x^{\sqrt{2}}$, при x > 1, где x — число, являющееся степенью числа 2.

1)
$$2; 2\sqrt{2}; 4; 4\sqrt{2} : 8$$
 2) $\sqrt{2}; 2\sqrt{2}; 4; 4\sqrt{2}; 8$ 3) $\sqrt{2}; 2; 2\sqrt{2}; 4\sqrt{2}; 8\sqrt{2}$ 4) $2\sqrt{2}; 4\sqrt{2}; 6\sqrt{2}; 8\sqrt{2}; 10\sqrt{2}$ 5) $1; \sqrt{2}; 2; 2\sqrt{2}; 4$ 6) $\sqrt{2}; 2\sqrt{2}; 4\sqrt{2}; 8\sqrt{2}; 16\sqrt{2}$ 7) $1; 2; 4; 8; 16$ 8) $\sqrt{2}; 3\sqrt{2}; 4\sqrt{2}; 5\sqrt{2}; 6\sqrt{2}$

35. Точка A — центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.

- 1) 306π 2) $\frac{200}{3}\pi$ 3) $\frac{500}{3}\pi$ 4) 208π 5) $\frac{100}{3}\pi$ 6) 108π 7) 250π 8) 100π