При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Вычислите 0,(53) + 1,(2).

1)
$$1\frac{20}{33}$$
 2) $1\frac{25}{33}$ 3) $1\frac{25}{30}$ 4) $2\frac{25}{33}$

- **2.** Если $a+b=-3,\ ab=2,$ то значение выражения a^2b+ab^2 равно 1) –5 2) –6 3) 5 4) 6
- **3.** Найдите значение выражения: $\sin 54^{\circ} \cdot \sin 18^{\circ}$.

4. Разложите квадратный трехчлен $4x^2 + 9x + 2$ на множители.

1)
$$(4x+1)(x+3)$$
 2) $(4x+1)(x+1)$ 3) $(x+1)(x+2)$ 4) $(4x+1)(x+2)$

5. Решите уравнение $\left| x - \frac{1}{3} \right| = 7\frac{2}{3}$ и найдите сумму его корней

1)
$$\frac{2}{3}$$
 2) $-\frac{2}{3}$ 3) $1\frac{1}{3}$ 4) $7\frac{1}{3}$

6. Решите систему уравнений

$$\begin{cases} x^2 - y^2 = 7, \\ 3x + 3y = 63. \end{cases}$$

Найдите разность x - y.

1) 14 2) 147 3)
$$-3$$
 4) $\frac{1}{3}$

7. Найдите неопределённый интеграл $\int \left(\sin\left(x+\frac{\pi}{4}\right)+\cos\left(x-\frac{\pi}{3}\right)\right)dx$.

1)
$$\sqrt{2}(\cos x - \sin x) + C$$
 2) $\frac{\sqrt{2}\sin x - \sqrt{2}\cos x + \sin x - \sqrt{3}\cos x}{2} + C$
3) $\frac{\sin x + \cos x + \sin x - \sqrt{3}\cos x}{2} + C$ 4) $\frac{\sqrt{2}\sin x - \sqrt{2}\cos x + \sin x - \cos x}{2} + C$

8. В равносторонний конус вписан шар. Найдите площадь поверхности шара, если образующая конуса равна 6 см.

(Примечание Решу ЕНТ: видимо, равносторонним конусом составители задания называют такой, у которого осевое сечение — равносторонний треугольник.)

1)
$$13\pi \text{ cm}^2$$
 2) $15\pi \text{ cm}^2$ 3) $16\pi \text{ cm}^2$ 4) $12\pi \text{ cm}^2$

- 9. Найдите целые положительные решения системы неравенств: $\begin{cases} 1-0, 5x < 4+x, \\ 9-2, 8x \geqslant 6-1, 3x. \end{cases}$
 - 1) 0; 1; 2 2) 1; 2; 3; 4 3) 0; 1; 2; 3 4) 1; 2
- **10.** Решите уравнение $\cos^2 x + 4\cos x 5 = 0$ и найдите его корни на $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

1)
$$\frac{\pi}{2}$$
 2) π 3) 0 4) $-\frac{\pi}{2}$

11. Найдите первообразную функции $f(x) = 4(3x+2)\sqrt{x}$, проходящую через точку (1; 5).

$$1) \ \frac{24}{5} x^{\frac{5}{2}} - \frac{16}{3} x^{\frac{3}{2}} - 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}} \qquad 2) \ \frac{24}{5} x^{\frac{5}{2}} + \frac{16}{3} x^{\frac{3}{2}} - \frac{77}{15}$$

$$3) \ x^{\frac{5}{2}} + \frac{16}{3} x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}. \qquad 4) \ \frac{24}{5} x^{\frac{5}{2}} + \frac{16}{3} x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}.$$

12. При каких значениях переменной x значение выражения $\frac{5x+4}{2}$ больше или равно значению выражения $\frac{31-5x}{3}$.

1)
$$\left[\frac{1}{2}; +\infty\right)$$
 2) $\left(-\infty; 2\right)$ 3) $\left(\frac{1}{2}; +\infty\right)$ 4) $\left[2; +\infty\right)$

- **13.** Сумма двух сторон треугольника равна 18 см, а третью сторону его биссектриса делит на отрезки 4 см и 5 см. Наименьшая сторона треугольника равна
 - 1) 10 cm 2) 7 cm 3) 9 cm 4) 8 cm
 - **14.** Вычислите $\int_{2}^{7} \frac{3}{\sqrt{3x-1}} dx$.

1)
$$3\sqrt{5}$$
 2) 5 3) $2\sqrt{5}$ 4) $\sqrt{5}$

15. Найдите высоту пирамиды, в основании которой равносторонний треугольник со стороной 27 см и каждое ребро пирамиды образует угол 45° с плоскостью основания.

1)
$$6\sqrt{3}$$
 cm 2) $3\sqrt{3}$ cm 3) $\sqrt{3}$ cm 4) $9\sqrt{3}$ cm

16. Решите уравнение $\sqrt{x-5} - \sqrt{(x-5)(x+2)} = 0$. В ответ запишите сумму его корней (корень, если он один).

- 17. Найдите число A, если $A=x_1+x_2+y_1+y_2$, где $\{(x_1;y_1);(x_2;y_2)\}$ являются решением системы уравнений: $\begin{cases} \sin^2 x + \cos y = 1, \\ \cos^2 x + \cos y = 1. \end{cases}$
 - 1) $\frac{\pi}{2} + 2\pi n + 4\pi k, n, k \in \mathbb{Z}$ 2) $1 + 4\pi n + 4\pi k, n, k \in \mathbb{Z}$ 3) $\frac{\pi}{2} + \pi n + 4\pi k, n, k \in \mathbb{Z}$ 4) $1 + 2\pi n + 2\pi k, n, k \in \mathbb{Z}$
 - **18.** Найдите площадь фигуры, ограниченной двумя прямыми: $y = 2x, \ y = 3x, \ 0 \leqslant x \leqslant 4.$
 - 1) 2 2) 4 3) 16 4) 8

19. Сколько сторон имеет правильный многоугольник, если градусная мера его внутреннего угла равна 160°?

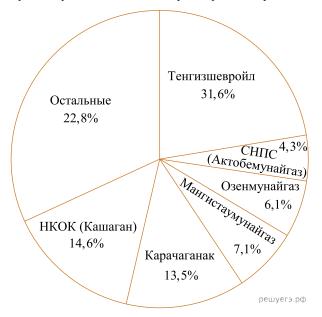
20. Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов равна 31. Найдите первый член прогрессии.

21. В тетраэдре $\overrightarrow{DA} = \overrightarrow{a}$, $\overrightarrow{DB} = \overrightarrow{b}$, $\overrightarrow{DC} = \overrightarrow{c}$, точки M и N — середины рёбер AB и BC соответственно, точки K и L — середины отрезков AN и DM. Выразите вектор \overrightarrow{AB} через векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} .

1)
$$\vec{a} - \vec{c}$$
 2) $\vec{b} + \vec{a}$ 3) $\vec{b} - \vec{c}$ 4) $\vec{b} - \vec{a}$

22. Избавьтесь от иррациональности в знаменателе: $\frac{1}{\sqrt{x-y}}$.

1)
$$\frac{x-y}{x}$$
 2) $\sqrt{x+y}$ 3) $\sqrt{x-y}$ 4) $\frac{\sqrt{x-y}}{x-y}$


- **23.** Решите уравнение: $4^{\log_8(2x-2)} \cdot 2^{-\log_2 \sqrt[3]{2x-2}} = 2\sqrt[3]{2}$.
- **24.** Решите неравенство $\log_{0.5}(x-1) > 2$.

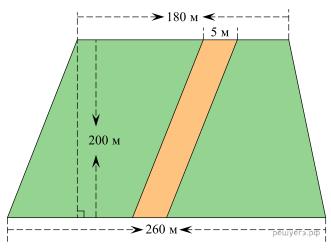
1)
$$(1; 1,25)$$
 2) $(1,25;+\infty)$ 3) $(1;+\infty)$ 4) $(1; 4)$

25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = 2\sin x - \mathrm{ctg}x, \ x_0 = \frac{\pi}{4}.$

1)
$$y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{2} + \sqrt{2} - 1$$
 2) $y = 2x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$
3) $y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2}$ 4) $y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$

Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз, Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

26. В 2020 году добыча нефти составила 91 млн тонн в год. На сколько процентов планируется повышение добычи нефти к 2025 году (ответ округлите до целых)?


1) на 20%

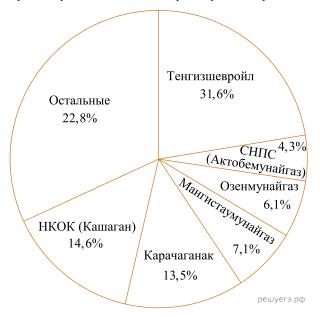
2) на 18%

3) на 12%

4) на 15%

На рисунке изображен огород трапециевидной формы засеянный овощами (верхнее основание трапеции равно 180 м, нижнее основание равно 260 м, высота равна 200 м) и дорога в виде параллелограмма шириной 5 м, проходящая через огород.

27. Общая площадь огорода и дороги равна


1) 13000 m^2

2) 50000 m^2

 $3)44000 \text{ m}^2$

4) 90000 m^2

Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз, Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

- 28. Определите объем добычи нефти в 2020 году недропользователем НКОК «Кашаган» в млн тонн (ответ округлите до десятых)
 - 1) 15,2 млн тонн
- 2) 13,3 млн тонн
- 3) 10,2 млн тонн
- 4) 10,8 млн тонн


Детское ведерко имеет форму усеченного конуса с диаметрами основании 10 см и 34 см (нижнее основание меньше верхнего), образующей 13 см.

- **29.** Объем ведерки равен $(\pi \approx 3)$

- 1) 2125 cm^3 2) 3524 cm^3 3) 1995 cm^3 4) 1847 cm^3

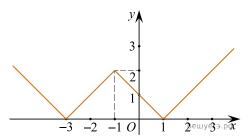
Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз, Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

30. Найдите разницу градусной меры сектора, соответствующего объему добычи нефти супергигантом «Тенгизшевройл» и градусной меры сектора, соответствующего объему добычи нефти НКОК (Кашаган) на круговой диаграмме (ответ округлите до целых).

31. Функция задана уравнением $y = 4\cos x - 4$. Установите соответствия:

А) Нули функцииБ) Область допустимых значений функции	1) $[-8; 0]$ 2) $\{\pi k: k \in \mathbb{Z}\}$
	3) $\{2\pi k: k \in \mathbb{Z}\}$
	4) [-4; 4]

32. Высота равнобедренного треугольника равна 4, основание равно 6. Установите соответствие между площадью треугольника, радиусом окружности, описанной около него и их числовыми значениями.


А) Площадь треугольника	25
Б) Радиус окружности, описанной около треугольника	1) $\frac{2c}{Q}$
	O
	2) 12
	3) 24
	4) 16

33. Представьте в виде многочлена выражение $(2x-3)^3\sqrt{x^2-4x+4}$, если известно, что x>2. Установите соответствия между коэффициентом при x, суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

А) Коэффициент при х	1) (-150; -120)
Б) Сумма коэффициентов многочлена	2) (-10; 5]
	3) [10; 30)
	4) (-110; -80)

34. При помощи графика функции y = ||x+1|-2| выясните, сколько решений имеет уравнение ||x+1|-2|=a в зависимости от значений параметра a. Установите соответствие между значениями параметра a и количеством решений уравнения

A)
$$a < 0$$
B) $0 < a < 2$
1) 3
2) 4
3) 0
4) 2

35. Второй член арифметической прогрессии (a_n) на 7,2 больше шестого члена. Четвертый член прогрессии равен 0,7. Установите соответствие между выражением и его числовым значением.

A) <i>d</i>	1) -2,4
Б) <i>a</i> ₁	2) 6,1
	3) -1,8
	4) 7,9

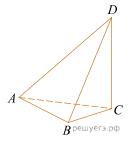
36. Упростите:
$$|\sqrt{7}+\sqrt{5}-4|+|\sqrt{7}+\sqrt{5}-5|$$
.

1) $2\sqrt{7}-2\sqrt{5}-1$ 2) $2\sqrt{7}$ 3) 1 4) $2\sqrt{5}+2\sqrt{7}+1$ 5) 2 6) $2\sqrt{5}+2\sqrt{7}-1$

37. Значение выражения
$$2\cos^2 x + 2\sin^2 x(1+tg^2x)\cdot\cos^2 x + 4$$
 равно 1) 5 2) 6 3) $\sqrt{25}$ 4) 8 5) 7 6) 0

38. Тело, падая с некоторой высоты, проходит в первую секунду 4,5 м, а каждую следующую — на 5,8 м больше. С какой высоты упало тело, если падение продолжалось 11 с?

1)
$$72\frac{1}{2}$$
 M 2) $62\frac{1}{2}$ M 3) 343,75 M 4) 72,5 M 5) $368\frac{1}{2}$ M 6) 368,5 M


39. Решите систему уравнений

$$\begin{cases} x^4 - y^4 = 15, \\ x^3 y - x y^3 = 6. \end{cases}$$

В ответе укажите значение выражения $x_1y_1 + x_2y_2$.

1)
$$-2$$
 2) 4 3) 3 4) $\sqrt{16}$ 5) -4 6) $\sqrt{9}$

40. Отрезок DC перпендикулярен плоскости прямоугольного треугольника ABC, $\angle B=90^\circ$. Треугольник ACD равнобедренный. Из перечисленных ниже ответов найдите те, которые равны значению синус угла между плоскостью ADB и ABC, если $AD=5\sqrt{2}$, AB=3.

1)
$$\frac{5\sqrt{41}}{41}$$
 2) $\frac{5}{41}$ 3) $\frac{5}{\sqrt{41}}$ 4) $\frac{\sqrt{41}}{41}$ 5) $\left(\frac{\sqrt{41}}{5}\right)^{-1}$ 6) $\frac{5\sqrt{5}}{41}$