При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Вычислите 0,(53) + 1,(2).
 - 1) $1\frac{20}{33}$ 2) $1\frac{25}{33}$ 3) $1\frac{25}{30}$ 4) $2\frac{25}{33}$
- **2.** Если a+b=-3, ab=2, то значение выражения a^2b+ab^2 равно $a^2b+ab^2=2$ равно $a^2b+ab^2=2$
- **3.** Найдите значение выражения: $\sin 54^{\circ} \cdot \sin 18^{\circ}$.
 - 1) 0,125 2) 0,5 3) 1 4) 0,25
- **4.** Разложите квадратный трехчлен $4x^2 + 9x + 2$ на множители.
- 1) (4x+1)(x+3) 2) (4x+1)(x+1) 3) (x+1)(x+2) 4) (4x+1)(x+2)
- **5.** Решите уравнение $\left| x \frac{1}{3} \right| = 7\frac{2}{3}$ и найдите сумму его корней
 - 1) $\frac{2}{3}$ 2) $-\frac{2}{3}$ 3) $1\frac{1}{3}$ 4) $7\frac{1}{3}$
- 6. Решите систему уравнений

$$\begin{cases} x^2 - y^2 = 7, \\ 3x + 3y = 63 \end{cases}$$

Найдите разность x - y.

1) 14 2) 147 3) -3 4)
$$\frac{1}{3}$$

- 7. Найдите неопределённый интеграл $\int \left(\sin\left(x+\frac{\pi}{4}\right)+\cos\left(x-\frac{\pi}{3}\right)\right)dx$.
 - 1) $\sqrt{2}(\cos x \sin x) + C$ 2) $\frac{\sqrt{2}\sin x \sqrt{2}\cos x + \sin x \sqrt{3}\cos x}{2} + C$

- 3) $\frac{\sin x + \cos x + \sin x \sqrt{3}\cos x}{2} + C$ 4) $\frac{\sqrt{2}\sin x \sqrt{2}\cos x + \sin x \cos x}{2} + C$
- **8.** В равносторонний конус вписан шар. Найдите площадь поверхности шара, если образующая конуса равна 6 см.

(Примечание Решу ЕНТ: видимо, равносторонним конусом составители задания называют такой, у которого осевое сечение — равносторонний треугольник.)

- 1) $13\pi \text{ cm}^2$ 2) $15\pi \text{ cm}^2$ 3) $16\pi \text{ cm}^2$ 4) $12\pi \text{ cm}^2$
- 9. Найдите целые положительные решения системы неравенств: $\begin{cases} 1-0,5x < 4+x, \\ 9-2,8x \geqslant 6-1,3x. \end{cases}$
- **10.** Решите уравнение $\cos^2 x + 4\cos x 5 = 0$ и найдите его корни на $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ 1) $\frac{\pi}{2}$ 2) π 3) 0 4) $-\frac{\pi}{2}$
- **11.** Найдите первообразную функции $f(x) = 4(3x+2)\sqrt{x}$, проходящую через точку (1; 5).

1)
$$\frac{24}{5}x^{\frac{5}{2}} - \frac{16}{3}x^{\frac{3}{2}} - 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}$$
 2) $\frac{24}{5}x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} - \frac{77}{15}$
3) $x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}$. 4) $\frac{24}{5}x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}$.

12. При каких значениях переменной x значение выражения $\frac{5x+4}{2}$ больше или равно значению выражения $\frac{31-5x}{3}$.

1)
$$\left[\frac{1}{2}; +\infty\right)$$
 2) $(-\infty; 2)$ 3) $\left(\frac{1}{2}; +\infty\right)$ 4) $[2; +\infty)$

- **13.** Сумма двух сторон треугольника равна 18 см, а третью сторону его биссектриса делит на отрезки 4 см и 5 см. Наименьшая сторона треугольника равна
 - 1) 10 cm 2) 7 cm 3) 9 cm 4) 8 cm
 - 14. Вычислите $\int\limits_2^r \frac{3}{\sqrt{3x-1}} dx$. 1) $3\sqrt{5}$ 2) 5 3) $2\sqrt{5}$ 4) $\sqrt{5}$

15. Найдите высоту пирамиды, в основании которой равносторонний треугольник со стороной 27 см и каждое ребро пирамиды образует угол 45° с плоскостью основания.

- 1) $6\sqrt{3}$ cm 2) $3\sqrt{3}$ cm 3) $\sqrt{3}$ cm 4) $9\sqrt{3}$ cm

16. Решите уравнение $\sqrt{x-5} - \sqrt{(x-5)(x+2)} = 0$. В ответ запишите сумму его корней (корень, если он один).

1) -4 2) 4 3) 5 4) 7

17. Найдите число A, если $A=x_1+x_2+y_1+y_2$, где $\{(x_1;y_1);(x_2;y_2)\}$ являются решением системы уравнений: $\begin{cases} \sin^2 x + \cos y = 1, \\ \cos^2 x + \cos y = 1. \end{cases}$

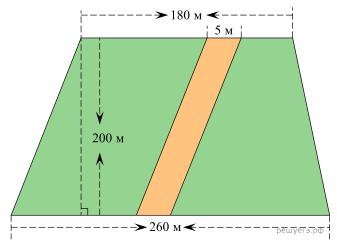
- 1) $\frac{\pi}{2} + 2\pi n + 4\pi k, n, k \in \mathbb{Z}$ 2) $1 + 4\pi n + 4\pi k, n, k \in \mathbb{Z}$ 3) $\frac{\pi}{2} + \pi n + 4\pi k, n, k \in \mathbb{Z}$
- **18.** Найдите площадь фигуры, ограниченной двумя прямыми: y = 2x, y = 3x, $0 \le x \le 4$.
 - 1) 2 2) 4 3) 16 4) 8
- 19. Сколько сторон имеет правильный многоугольник, если градусная мера его внутреннего угла равна 160°?
 - 1) 36 2) 12 3) 24 4) 18
- 20. Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов равна 31. Найдите первый член прогрессии.
 - 1) 32 2) 16 3) 12 4) 24
- **21.** В тетраэлре $\overrightarrow{DABC} \overrightarrow{DA} = \overrightarrow{a}$, $\overrightarrow{DB} = \overrightarrow{b}$, $\overrightarrow{DC} = \overrightarrow{c}$, точки M и N серелины рёбер AB и BCсоответственно, точки K и L — середины отрезков AN и DM. Выразите вектор \overrightarrow{AB} через векторы \vec{a} , \vec{b} \vec{b} \vec{c} .
 - 1) $\vec{a} \vec{c}$ 2) $\vec{b} + \vec{a}$ 3) $\vec{b} \vec{c}$ 4) $\vec{b} \vec{a}$
 - **22.** Избавьтесь от иррациональности в знаменателе: $\frac{1}{\sqrt{x-y}}$.
 - 1) $\frac{x-y}{x}$ 2) $\sqrt{x+y}$ 3) $\sqrt{x-y}$ 4) $\frac{\sqrt{x-y}}{x-y}$
 - **23.** Решите уравнение: $4^{\log_8(2x-2)} \cdot 2^{-\log_2 \sqrt[3]{2x-2}} = 2\sqrt[3]{2}$.
- 1) 4 2) 3 3) 8 4) 9


- **24.** Решите неравенство $\log_{0.5}(x-1) > 2$.
 - 1) (1; 1.25) 2) $(1.25; +\infty)$ 3) $(1; +\infty)$ 4) (1; 4)

25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = 2\sin x - \cot x, \ x_0 = \frac{\pi}{4}.$

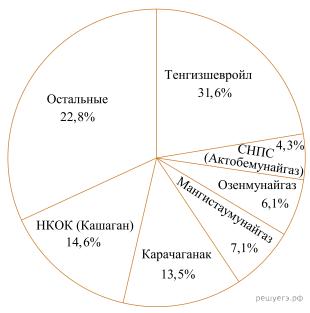
1)
$$y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{2} + \sqrt{2} - 1$$
 2) $y = 2x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$

3)
$$y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2}$$
 4) $y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$


Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз. Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

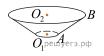
26. В 2020 году добыча нефти составила 91 млн тонн в год. На сколько процентов планируется повышение добычи нефти к 2025 году (ответ округлите до целых)?

- 1) на 20%
- 2) на 18%
- 3) на 12%
- 4) на 15%


На рисунке изображен огород трапециевидной формы засеянный овощами (верхнее основание трапеции равно 180 м, нижнее основание равно 260 м, высота равна 200 м) и дорога в виде параллелограмма шириной 5 м, проходящая через огород.

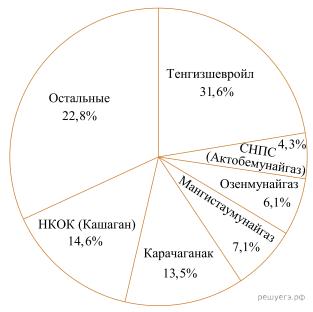
27. Общая площадь огорода и дороги равна

- 1) 13000 m^2
- 2) 50000 m^2
- 3) 44000 m^2
- 4) 90000 m^2


Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз, Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

28. Определите объем добычи нефти в 2020 году недропользователем НКОК «Кашаган» в млн тонн (ответ округлите до десятых)

- 1) 15,2 млн тонн
- 2) 13,3 млн тонн
- 3) 10,2 млн тонн
- 4) 10,8 млн тонн


Детское ведерко имеет форму усеченного конуса с диаметрами основании 10 см и 34 см (нижнее основание меньше верхнего), образующей 13 см.

29. Объем ведерки равен $(\pi \approx 3)$

- 1) 2125 cm^3 2) 3524 cm^3 3) 1995 cm^3 4) 1847 cm^3

Драйверами в нефтедобыче страны остаются три крупных нефтегазовых проекта — Тенгиз, Карачаганак и Кашаган. Они вносят существенный вклад в экономический рост страны в среднесрочном периоде. Объем добычи нефти будет расти и по прогнозу Министерства энергетики РК к 2025 году выйдет на уровень в 105 млн. тонн в год. Для этого, на всех трех месторождениях, реализуются проекты дальнейшего расширения и продления добычи.

30. Найдите разницу градусной меры сектора, соответствующего объему добычи нефти супергигантом «Тенгизшевройл» и градусной меры сектора, соответствующего объему добычи нефти НКОК (Кашаган) на круговой диаграмме (ответ округлите до целых).

1) 74°

2) 65°

3) 61°

4) 100°

31. Функция задана уравнением $y = 4\cos x - 4$. Установите соответствия:

А) Нули функции

1) [-8; 0]

Б) Область допустимых значений функшии

2) $\{\pi k: k \in \mathbb{Z}\}$

3) $\{2\pi k: k \in \mathbb{Z}\}$

4) [-4; 4]

32. Высота равнобедренного треугольника равна 4, основание равно 6. Установите соответствие между площадью треугольника, радиусом окружности, описанной около него и их числовыми значениями.

А) Площадь треугольника

2) 12

Б) Радиус окружности, описанной около треугольника

3) 24

4) 16

33. Представьте в виде многочлена выражение $(2x-3)^3\sqrt{x^2-4x+4}$, если известно, что x > 2. Установите соответствия между коэффициентом при x, суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

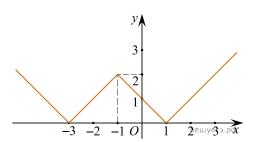
А) Коэффициент при х

1) (-150; -120)

Б) Сумма коэффициентов многочлена

2)(-10;513) [10; 30)

4)(-110; -80)


34. При помощи графика функции y = ||x+1|-2| выясните, сколько решений имеет уравнение ||x+1|-2|=a в зависимости от значений параметра a. Установите соответствие между значениями параметра а и количеством решений уравнения

A)
$$a < 0$$

B) $0 < a < 2$

1)3 2)4

3)0

4) 2

35. Второй член арифметической прогрессии (а,,) на 7,2 больше шестого члена. Четвертый член прогрессии равен 0.7. Установите соответствие между выражением и его числовым значени-


A)
$$d$$
 1) $-2,4$ 5) a_1 2) $6,1$ 3) $-1,8$ 4) 7.9

- **36.** Упростите: $|\sqrt{7} + \sqrt{5} 4| + |\sqrt{7} + \sqrt{5} 5|$. 1) $2\sqrt{7} - 2\sqrt{5} - 1$ 2) $2\sqrt{7}$ 3) 1 4) $2\sqrt{5} + 2\sqrt{7} + 1$ 6) $2\sqrt{5} + 2\sqrt{7} - 1$
- **37.** Значение выражения $2\cos^2 x + 2\sin^2 x(1+tg^2x) \cdot \cos^2 x + 4$ равно 1) 5 2) 6 3) $\sqrt{25}$ 4) 8 5) 7
- 38. Тело, падая с некоторой высоты, проходит в первую секунду 4,5 м, а каждую следующую — на 5,8 м больше. С какой высоты упало тело, если падение продолжалось 11 с?
 - 1) $72\frac{1}{2}$ M 2) $62\frac{1}{2}$ M 3) 343,75 M 4) 72,5 M 5) $368\frac{1}{2}$ M 6) 368,5 M
 - 39. Решите систему уравнений

$$\begin{cases} x^4 - y^4 = 15, \\ x^3 y - x y^3 = 6 \end{cases}$$

В ответе укажите значение выражения $x_1y_1 + x_2y_2$.

- 1) -2
- 3) 3 4) $\sqrt{16}$ 5) -4 6) $\sqrt{9}$
- **40.** Отрезок DC перпендикулярен плоскости прямоугольного треугольника ABC, $\angle B = 90^{\circ}$. Треугольник ACD равнобедренный. Из перечисленных ниже ответов найдите те, которые равны значению синус угла между плоскостью *ADB* и *ABC*, если $AD = 5\sqrt{2}$, AB = 3.

1) $\frac{5\sqrt{41}}{41}$ 2) $\frac{5}{41}$ 3) $\frac{5}{\sqrt{41}}$ 4) $\frac{\sqrt{41}}{41}$ 5) $\left(\frac{\sqrt{41}}{5}\right)^{-1}$ 6) $\frac{5\sqrt{5}}{41}$