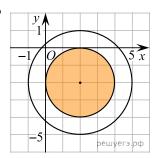
При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Вычислите: $|3 |\sqrt{3} 4|$.

- 1) $\sqrt{3}-7$ 2) $1-\sqrt{3}$ 3) $7-\sqrt{3}$ 4) $\sqrt{3}-1$
- **2.** Найдите значение выражения $a^{12} \cdot (a^{-4})^4$ при $a = -\frac{1}{2}$.
 - 1) 8 2) 32 3) 4 4) 16
- 3. Найдите значение выражения $5 \sin \frac{11\pi}{12} \cdot \cos \frac{11\pi}{12}$.
 - 1) 1 2) -0.5 3) 0.5 4) -1.25


- **4.** Разложите квалратный трехчлен $2x^2 + 7x 15$ на множители.
- 1) (2x-5)(x+3) 2) (2x+5)(x-3) 3) (x+5)(2x-3) 4) (x-5)(2x-3)

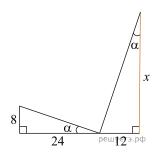
- **5.** Найдите отрицательный корень уравнения 8|x| 5|x| 17 = 0.
 - 1) $-5\frac{1}{5}$ 2) $-5\frac{1}{3}$ 3) $-5\frac{3}{5}$ 4) $-5\frac{2}{3}$
- **6.** Решите систему уравнений: $\begin{cases} 16 2x + 3(y+4) = 17, \\ 2(x-5) 2(y-5) 44 = 0. \end{cases}$
 - 1) (55; 33) 2) (-5; 3) 3) (5; 3) 4) (-55; 33)

- 7. Найдите неопределённый интеграл $\int (\cos 2x \cos x + \sin 2x \sin x) dx$.
 - 1) $\sin x$ 2) $\frac{1}{3}\sin x$ 3) $-\frac{1}{3}\sin x$ 4) $\sin 3x$

- 8. Образующая конуса равна 6 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

- 2) 32π 1) 9π 3) 18π
- 9. Укажите систему неравенств, которая задает множество точек, показанных штриховкой (1 клетка — 1 единица).

- 1) $\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$ 2) $\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$ 3) $\begin{cases} (x-2)^2 + (y-2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$ 4) $\begin{cases} (x-2)^2 + (y+2)^2 \ge 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$


- **10.** Решите уравнение: $\sin 3x \cos 3x = \frac{1}{2}$.
- 1) $\frac{\pi}{12} + \frac{\pi k}{3}$, $k \in \mathbb{Z}$ 2) $\frac{\pi}{6} + \frac{\pi k}{3}$, $k \in \mathbb{Z}$ 3) $\frac{\pi}{12} + \frac{\pi k}{6}$, $k \in \mathbb{Z}$ 4) $\frac{\pi}{3} + \frac{\pi k}{3}$, $k \in \mathbb{Z}$

- **11.** Укажите общий вид первообразной для функции: $f(x) = 2^x$.
- 1) $F(x) = \frac{2^x}{\ln 2} + C$ 2) $F(x) = 2^x \ln x + C$ 3) $F(x) = 2^x + C$ 4) $F(x) = \frac{2^x}{e} + C$

12. Решите неравенство: $\frac{7}{2r-3} < 0$.

1)
$$\left(-\frac{3}{2}; +\infty\right)$$
 2) $\left(-\infty; \frac{3}{2}\right)$ 3) $\left(-\infty; -\frac{3}{2}\right]$ 4) $\left(-\infty; -1\right)$

13. По данным рисунка найдите значение x.

- 1) 36 2) 19 3) 18 4) 12
- **14.** Вычислите $\int_{0}^{1} \sqrt{x+1} dx.$ 1) $\frac{2^{\frac{3}{2}}-2}{2}$ 2) $\frac{2^{\frac{5}{2}}-2}{2}$ 3) $\frac{2^{\frac{3}{2}}-2}{5}$ 4) $\frac{2^{\frac{3}{2}}+2}{2}$
- 15. Из точки к плоскости проведены перпендикуляр и наклонна под углом 30° к ее проекции. Найдите длину наклонной, если длина перпендикуляра 12 см.
 - 1) 8 см
- 2) 6 cm 3) 24 cm
- 4) 12 cm
- **16.** Укажите корни уравнения: $(x^2 4) \cdot \sqrt{x 1} = 0$.
- 1) 1: 3 2) 0; 2 3) 3; 2 4) 2; 1
- 17. Решите систему неравенств

$$\begin{cases} 2^{x+3} < \left(\frac{1}{\sqrt{2}}\right)^{6-8x}, \\ (0,2)^{x^2 - 4x - 12} > 1 \end{cases}$$

- 1) (0; 6)
- 2) (0; 1) 3) (-2; 6) 4) (2; 6)

4) 36

- 18. Найдите ограниченной площадь фигуры, двумя прямыми: y = 2x + 4, y = 3x - 5, $0 \le x \le 9$.
 - 2) 40,5 3) 40
- **19.** Правильный n-угольник вписан в окружность. Её радиус составляет с одной из сторон nугольника угол 54° . Найдите n.
 - 1)6 2) 4
- 3) 5
- 4) 7

- 20. Учитель дал задание: из предложенных последовательностей
 - a) $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{4}$; $\frac{1}{5}$; ... 6) $\frac{1}{3}$; $\frac{1}{6}$; $\frac{1}{12}$; $\frac{1}{24}$; ... B) 10; 8; 6; 2;...

выбрать бесконечно убывающую геометрическую прогрессию и найти сумму всех его членов. Если ученик выполнил задание верно, то в ответе он получил.

1)
$$1\frac{2}{3}$$
 2) $\frac{2}{3}$ 3) 3 4) 1

- 21. Стороны правильного треугольника АВС равны 6. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{AC} .
 - 1) $18\sqrt{3}$ 2) 18 3) 9 4) $6\sqrt{3}$
 - **22.** Упростите:

$$\frac{\left(b^{1,2}+\sqrt{2}\right)^3+\left(b^{1,2}-\sqrt{2}\right)^3}{b^{2,4}+6}.$$

- 1) $b^{2,4}$ 2) $b^{1,2}$ 3) $2b^{2,4}$ 4) $2b^{1,2}$
- **23.** Решите уравнение: $\log_2(x+1) + \log_2(x-2) = 2$.
 - 1) 2 2) 3 3) 4 4) -2: 3

- **24.** Решите неравенство $\sqrt{6x-5} > -\sqrt{5}$.

1)
$$\left(-\infty; \frac{5}{6}\right)$$
. 2) $\left(\frac{5}{3}; +\infty\right)$. 3) нет решений 4) $\left[\frac{5}{6}; +\infty\right)$.

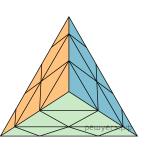
- **25.** Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = 2\sin x - \cot x, \ x_0 = \frac{\pi}{4}.$

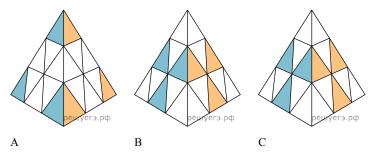
1)
$$y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{2} + \sqrt{2} - 1$$
 2) $y = 2x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$

3)
$$y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2}$$
 4) $y = (2 + \sqrt{2})x - \frac{\pi(\sqrt{2} + 2)}{4} + \sqrt{2} - 1$

Чайный двор

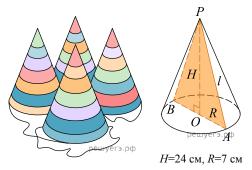
Посуда является товаром народного потребления и оценивается не только как предмет быта, но и как элемент декора. Спрос на нее всегда остается на достаточно высоком уровне по ряду причин. На сегодняшний день рынок представлен многообразием товаров различных видов посуды и ценовых категорий, что позволяет удовлетворить любой спрос.


В магазине «Чайный двор» выставлены на продажу различный ассортимент чайной посуды начиная от ложки для чая, заканчивая посудой для чайных церемоний из различных металлов и материалов. По акции продавались 5 чашек, 8 блюдцев, 7 ложек. Мадина купила домой комплект посуды по акции.


- 26. Сколькими способами Мадина может выбрать в магазине комплект «чашка+блюдце+ложка»?
 - 1) 200
- 2) 240
- 3) 280
- 4) 300

Перед отъездом в Японию, Самат приобрел для хранения важных документов и ценных вешей коловый сейф с шестизначным колом, состоящим из цифр 1, 2, 3 и букв М. N. *K*.

- 27. Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр так, чтобы буква M была первой?
 - 1) 5040
- 2) 36
- 3) 720
- 4) 120


Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: А — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

- 28. Под каким углом синяя грань Пирамидки наклонена к желтой грани?
- 2) $\arccos \frac{1}{6}$ 3) $\arccos \frac{1}{3}$

Айша изготовила конусообразный головной убор — колпак (см. рис.).

- **29.** Сколько нужно ленты, чтобы обвить края колпака, если $\pi \approx 3$?
 - 1) 42 cm
- 2) 36 см
- 3) 46 см
- 4) 40 cm

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0,7 м × 1,4 м. На швы и обрезки тратится 10 % от площади крыши.

- 30. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?
 - 1) в 24 раза
- 2) в 64 раза
- 3) в 13 раз
- 4) в 16 раз

31. Квадратичная функция задана уравнением $y = x^2 - 1$. Установите соответствие между нулями функции и координатами вершины параболы.

А) Нули функции	1) (1; 0)
7 3 13	2) {-1; 1}
Б) Координаты вершины параболы	, (, ,
	3) {-2; 2}
	4) $(0; -1)$

32. Куб, объем которого равен 8, вписан в шар. Установите соответствие между радиусом шара, площадью его поверхности и числовыми промежутками, которым принадлежат их значения.

А) Радиус шара	1) (0; 1)
Б) Площадь поверхности шара	2) [3; 4]
	3) (1; 2]
	4) (33; 40)

33. Представьте в виде многочлена выражение $(3x-4)^2(2x+1)^2$. Установите соответствия между коэффициентом при x^2 , коэффициентом при x и числовым промежуткам, которым они принадлежат.

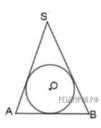
A) Коэффициент при x^2	1) [20; 30)
Б) Коэффициент при х	2) (-25; -20) 3) (-10; 10)
	4) [40; 42]

34. Даны уравнения $\log_2(x^2 + 2x + 1) = 0$ и $2^{x^2 - 4x - 8} = 16$. Установите соответствия:

А) Каждое число является корнем хотя	1) 1, 2, 4
бы одного из уравнений	2) 0, 7, 1
Б) Ни одно из чисел не является корнем	3) 0, 6, -2
уравнений	4) $6, 5, -2$

35. Геометрическая прогрессия (b_n) задана формулой *n*-го члена $b_n = 2 \cdot (-3)^{n-1}$. Установите соответствие между выражением и его числовым значением.

A) b_4	1) 14
Б) S ₃	2) -54
, 3	3) 162
	4) 3


- **36.** Выполните действия $(3\sqrt{175} 5\sqrt{28} + 3\sqrt{63})^2 40 \cdot \sqrt[3]{0,027}$. 1) 1250 2) 1372 3) 1260 4) $25\sqrt{3}$ 5) $29\sqrt{7}$ 6) 1360
- **37.** Значение выражения $\cos\left(\alpha \frac{2\pi}{3}\right) + \cos\left(\alpha + \frac{\pi}{3}\right)$ равно 1) $-\frac{\sqrt{2}}{2}$ 2) 0 3) $-\frac{\sqrt{2}}{2}$ 4) $-\frac{1}{2}$ 5) -1
- 38. Значение суммы первых трех членов возрастающей арифметической прогрессии с положительными членами равно 15, а значение суммы их квадратов равно 93. Найдите пятый член этой прогрессии.

2) 18 3) 14 4) 11 5) 15

39. Решите систему неравенств $\begin{cases} x + y = 4, \\ xy + y^2 = 8. \end{cases}$

1) 20

- 1) (1; 3) 2) (2; 3) 3) (-4; 2) 4) (2; 2) 5) (-2; 2) 6) (2:4)
- 40. Из конуса вырезали шар наибольшего объёма. Найдите отношение объёма срезанной части конуса к объёму шара, если осевое сечение конуса — равносторонний треугольник.

6) 12

1) $\frac{4}{5}$ 2) $\frac{5}{2}$ 3) $\frac{4}{3}$ 4) $\frac{5}{4}$