При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Найдите сумму: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ 1) 0,5 2) 0,25 3) 2 4) 1
- **2.** Представьте в виде дроби выражение $\frac{10x}{2x-3} 5x$ и найдите его значение при x = 0, 5.

 1) -5 2) -10 3) 2 4) 5
- 3. Упростите выражение: $\frac{\cos 50^\circ + \sin^2 25^\circ}{\cos^2 25^\circ} + 1$. 1) $\sin 25^\circ + 1$ 2) $\cos 25^\circ$ 3) 0 4) 2
- **4.** Замените знак * одночленом, так чтобы полученный трёхчлен $6,25q^2-15qg+*$ можно было представить в виде квадрата двучлена
 - 1) $9g^2$ 2) $5g^2$ 3) 9g 4) $3g^2$
 - **5.** Решите уравнение: 8(x-4) + 3(2-x) = -21. 1) 0,1 2) 1 3) 1,2 4) 0,2
 - 6. Решите систему уравнений:

$$\begin{cases} 2x - 3y = 14, \\ x + 3y = -11. \end{cases}$$
1) (2; 3) 2) (1; -4) 3) (-1; -3) 4) (2; 1)

- 7. Найдите неопределённый интеграл $\int (2\cos 2x 3\sin 3x) dx$.
 - 1) $\cos 2x + \sin 3x + C$ 2) $\sin 2x \cos 3x + C$ 3) $\sin x + \cos x + C$ 4) $\sin 2x + \cos 3x + C$

- **8.** Радиус верхнего основания усечённого конуса равен 2 м, высота 6 м. Найдите радиус нижнего основания, если его объём равен 38π м³.
 - 1) 4 м 2) 2 м 3) 3 м 4) 1 м
 - **9.** Решите систему неравенств: $\begin{cases} 2x 5 < 4 x, \\ 7x 1 \geqslant 9 + 12x \end{cases}$
 - 1) [1; -2) 2) (-2; 3] 3) $(-\infty; -2]$ 4) $[1; +\infty)$
 - 10. Решите уравнение: $\arcsin x = \cos \frac{\pi}{3}$ 1) $\frac{2\pi}{3}$ 2) $\frac{\pi}{2}$ 3) $\sin \frac{1}{2}$ 4) $\frac{\pi}{6}$
 - **11.** Укажите одну из первообразных для функции $f(x) = -\frac{6}{x}$, при x > 0.
 - 1) $F(x) = \frac{1}{6} \ln x$ 2) $F(x) = \ln x$ 3) $F(x) = 6 \ln x$ 4) $F(x) = -6 \ln x$
 - **12.** Какой промежуток является решением неравенства: $\frac{x-1}{2-x} \leqslant 0$.
 - 1) $(-\infty; 1] \cup (2; +\infty)$ 2) $[0; 1] \cup (2; +\infty)$ 3) [1; 2] 4) $(-\infty; 1) \cup (2; +\infty)$
 - 13. Синус большего угла треугольника со сторонами 10 см, 17 см, 21 см равен

1)
$$\frac{84}{85}$$
 2) $\frac{27}{57}$ 3) $\frac{17}{71}$ 4) $\frac{83}{170}$

- **14.** Вычислите $\int_{0}^{1} \sqrt{x+1} dx.$
 - 1) $\frac{2^{\frac{3}{2}}-2}{3}$ 2) $\frac{2^{\frac{5}{2}}-2}{3}$ 3) $\frac{2^{\frac{3}{2}}-2}{5}$ 4) $\frac{2^{\frac{3}{2}}+2}{3}$
- **15.** Из точки к плоскости проведены перпендикуляр и наклонна под углом 30° к ее проекции. Найдите длину наклонной, если длина перпендикуляра 12 см.
 - 1) 8 cm 2) 6 cm 3) 24 cm 4) 12 cm
 - **16.** Найдите произведение корней уравнения $4^{x^2} + 128 = 3^{1-x^2} \cdot 12^{x^2}$.
 - 1) -4 2) -3 3) $-\sqrt{3}$ 4) 3

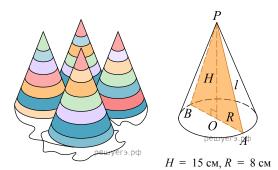
17. Решите систему неравенств

1) (0: 6)

$$\begin{cases} 2^{x+3} < \left(\frac{1}{\sqrt{2}}\right)^{6-8x}, \\ (0,2)^{x^2 - 4x - 12} > 1. \end{cases}$$

$$(0,2)^{x^2 - 4x - 12} > 1.$$

$$(0,2)^{(0,2)} = (0,2)^{(0,2$$


- 18. Найдите ограниченной плошаль фигуры, двумя прямыми: y = 2x + 4, y = 3x - 5, $0 \le x \le 9$.
 - 3) 40 1) 42 2) 40.5 4) 36
- 19. Стороны параллелограмма равны 5 см и 6 см, а одна из диагоналей равна 7 см. Найдите наименьшую высоту параллелограмма.
 - 2) $2\sqrt{6}$ cm 3) $\sqrt{6}$ cm 4) 4 cm 8 см
 - **20.** Найдите q данной геометрической прогрессии: 54; 36;...
 - 1) $\frac{1}{2}$ 2) $\frac{1}{3}$ 3) $\frac{3}{2}$ 4) $\frac{2}{3}$
- **21.** Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если A(3;7;4); B(5;-2;34); C(4;-7;-10); D(3;2;1).
 - 1) $\arccos\left(\frac{247\sqrt{199955}}{199955}\right)$ 2) $\arccos\left(-\frac{247\sqrt{199955}}{199955}\right)$ 3) $\arccos\left(\frac{330\sqrt{199955}}{199955}\right)$ 4) $\arccos\left(\frac{247\sqrt{199955}}{985}\right)$
 - **22.** Упростите: $\frac{\sin 3\alpha}{\sin \alpha} \frac{\cos 3\alpha}{\cos \alpha}.$
- **23.** Пусть x_0 наибольший корень уравнения $\log_9^2\left(\frac{x}{81}\right) + \log_9 x 22 = 0$, тогда значение выражения $3\sqrt[3]{x_0}$ равно ...
 - 2) 81 3) 169 4) 243 1)9
 - **24.** Решите простейшее тригонометрическое неравенство $\sin x > \frac{1}{2}$.

1)
$$\left(\frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k\right)$$
, $k \in \mathbb{Z}$ 2) $\left(\frac{\pi}{3} + 2\pi k; \frac{2\pi}{3} + 2\pi k\right)$, $k \in \mathbb{Z}$ 3) $\left(-\frac{\pi}{6} + 2\pi k; \frac{\pi}{6} + 2\pi k\right)$, $k \in \mathbb{Z}$ 4) $\left(-\frac{\pi}{3} + 2\pi k; \frac{\pi}{3} + 2\pi k\right)$, $k \in \mathbb{Z}$

25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = e^x$, $x_0 = 1$.

1)
$$y = ex$$
 2) $y = e^x$ 3) $y = ex + 1$ 4) $y = ex - 1$

Александр изготовила конусообразный головной убор — колпак (см. рис.).

26. Найдите площадь основания конуса, $\pi \approx 3$.

- 1) 178 cm^2 2) 196 cm^2
- 3) 192 cm^2 4) 186 cm^2

На столе лежат карточки, на которых записаны числа 1; 2; 3; 4; 5. Марат наугад взял

27. Какова вероятность, что сумма чисел, записанных на карточках, которые вытянул Марат, меньше 10?

- 1)0.92) 0.1 3) 0.3 4) 0.6
- 28. Какова вероятность, что объем прямоугольного параллелепипеда, стороны которого равны числам, записанным на карточках, которые вытянул Марат, будет кратным 2?
 - 1) 0.1
- 2) 0,3
- 4) 0.5

29. Какова вероятность того, что Марат сможет построить прямоугольный треугольник, стороны которого равны числам, записанных на выбранных им карточках?

- 1) 0.6
- 2) 0.1
- 3) 0.5

3) 0.9

4) 0.3

6) 36

30. Какова вероятность, что Марат сможет построить треугольник, стороны которого равны числам, записанным на вытянутых им карточках?

4) 0.6

- 1) 0,7 2) 0,3 3) 0,1
- **31.** Функция задана уравнением $y = \sqrt{x^2 + 4x 5}$. Установите соответствия:
 - А) Область определения функции 1) $(-\infty; -1) \cup (5; +\infty)$ Б) Нули функции 2) $\{-5; 1\}$ 3) $\{-1; 5\}$ 4) $(-\infty; -5] \cup [1; +\infty)$
- **32.** Шар вписан в конус, длина образующей которого равна 25, а площадь полной поверхности равна 224π . Установите соответствие между высотой конуса, радиусом шара и числовыми промежутками, которым принадлежат их значения.

А) Высота конуса	1) (10; 14)
Б) Радиус шара	2) [15; 19)
	3) (21; 26]
	4) [5; 7]

33. Найдите два числа x и y, x > 1 > y, если известно, что разность чисел x и y равна 6, а разность кубов этих чисел равна 126.

А) Число х принадлежит промежутку	1) (1; 2)
Б) Число у принадлежит промежутку	2) [-1; 0]
	3) (2; 3)
	4) [5: 9)

34. Даны уравнения $2\sqrt{x-1} = \sqrt{6-x}$ и $x^2 - 9x + 14 = 0$. Установите соответствия:

А) Число является корнем второго урав-	1) 2
нения, но не является корнем первого	2) 1
уравнения	3) 4
Б) Число является корнем обоих уравне-	4) 7
ний	

35. Арифметическая прогрессия (a_n) задается формулой n-го члена: $a_n = 5 - 3$, 6n. Установите соответствие между выражением и его числовым значением.

A)
$$a_6$$
 1) -10,8
B) $a_4 - a_2$ 2) -3,6
3) -7,2
4) -16,6

36. Среди натуральных чисел от 32 до 42 включительно выберите те числа, которые имеют больше 5 делителей (кроме 1 и самого числа).

1) 33 2) 42 3) 32 4) 40 5) 34

- **37.** Значение выражения $5\sin^2\frac{13\pi}{12} + 5\cos^2\frac{13\pi}{12}$ равно 1) 5 2) 0 3) 1 4) -5 5) -1 6) 10
- **38.** Сумма трех данных чисел, составляющих арифметическую прогрессию, у которой разность больше нуля, равна 15. Если к этим числам прибавить соответственно 1, 4 и 19, то полученные числа составляют первые три члена геометрической прогрессии. Данные три числа равны:
 - 1) 5 2) 8 3) 11 4) 14 5) 2 6) 7
 - 39. Решите систему логарифмических уравнений

$$\begin{cases} \lg(x - 2y - 6) = 0, \\ \log_2(x - y) = 1. \end{cases}$$

В ответе укажите значение выражения $\frac{x}{y}$.

1)
$$\frac{3}{5}$$
 2) $\frac{3}{4}$ 3) $\frac{1}{2}$ 4) $-\frac{3}{5}$ 5) $\frac{6}{10}$ 6) $-\frac{3}{4}$

40. Через вершину острого угла прямоугольного треугольника ABC с прямым углом C проведена прямая AD, перпендикулярная плоскости треугольника. Найдите расстояние от точки D до вершины B, если AC = 8, BC = 9 и AD = 10.

1)
$$7\sqrt{5}$$
 2) $\sqrt{145}$ 3) $\sqrt{245}$ 4) 132 5) $\sqrt{125}$ 6) $5\sqrt{7}$