При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Запишите в виде обыкновенной дроби бесконечную периодическую десятичную дробь 21,00(12).

1)
$$\frac{1}{825}$$
 2) $21\frac{1}{625}$ 3) $21\frac{1}{825}$ 4) $12\frac{1}{825}$

2. Упростите выражение $\frac{a^{-11} \cdot a^4}{a^{-3}}$ и найдите его значение при $a = -\frac{1}{2}$. В ответе запишите полученное число.

- 3. Найдите значение выражения: $\left(\cos\frac{5\pi}{12} + \cos\frac{\pi}{12}\right) \cdot \left(\sin\frac{\pi}{12} \sin\frac{5\pi}{12}\right)$.

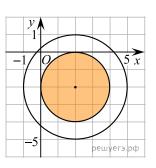
 1) $-\frac{\sqrt{3}}{2}$ 2) 1 3) $\frac{\sqrt{2}}{2}$ 4) $\sqrt{3}$
- **4.** Укажите верное разложение на множители многочлена $2ab + 5a^2 + 2b + 5a$.

1)
$$(a+5b)(a+1)$$
 2) $(5a+2b)(a+1)$ 3) $(5a+2b^2$ 4) $(5a+b)(a+1)$

5. Найдите отрицательный корень уравнения 8|x| - 5|x| - 17 = 0.

1)
$$-5\frac{1}{5}$$
 2) $-5\frac{1}{3}$ 3) $-5\frac{3}{5}$ 4) $-5\frac{2}{3}$

6. Найдите значение выражения $3x_0-\frac{1}{3}y_0$, где $(x_0;\ y_0)$ — решение системы уравнений $\begin{cases} x^2+2y^2=1,\\ x-y^2=1. \end{cases}$


7. Найдите неопределённый интеграл $\int \frac{x^4 + x^3 + x - 3}{x^2 + 1} dx$.

1)
$$\frac{1}{6}x(2x^2+3x-6)-3 \arctan x+C$$
 2) $\frac{1}{6}x(2x^2+3x-6)-2 \arctan x+C$ 3) $-\frac{1}{6}x(2x^2-3x-6)-2 \arctan x+C$ 4) $\frac{1}{6}x(2x^2+3x-6)+2 \arctan x+C$

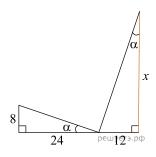
8. Образующая конуса равна 6 и составляет с плоскостью основания угол 30° . Найдите площадь основания конуса.

1)
$$9\pi$$
 2) 32π 3) 18π 4) 27π

9. Укажите систему неравенств, которая задает множество точек, показанных штриховкой (1 клетка — 1 единица).

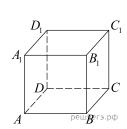
1)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$
2)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$
3)
$$\begin{cases} (x-2)^2 + (y-2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$$
4)
$$\begin{cases} (x-2)^2 + (y+2)^2 \ge 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$

10. Найдите наименьший положительный корень уравнения $\sin 2x = \frac{1}{2}$.


1)
$$\frac{\pi}{6}$$
 2) $\frac{\pi}{12}$ 3) $\frac{\pi}{3}$ 4) $\frac{5\pi}{12}$

11. Укажите общий вид первообразной для функции: $f(x) = 2^x$.

1)
$$F(x) = \frac{2^x}{\ln 2} + C$$
 2) $F(x) = 2^x \ln x + C$ 3) $F(x) = 2^x + C$ 4) $F(x) = \frac{2^x}{e} + C$


12. Из ниже предложенных вариантов чисел укажите число, которое является решением неравенства: $\frac{(x-3)^2(x+5)}{(x-7)}\geqslant 0$.

13. По данным рисунка найдите значение x.

14. Вычислите интеграл: $\int_{-5}^{1} (x+2)^2 dx.$ 1) 23 2) -10 3) 15 4) 18

15. В единичном кубе найдите расстояние от вершины B до плоскости (ACB_1) .

1)
$$\frac{\sqrt{3}}{2}$$
 2) $\sqrt{3}$ 3) $\frac{\sqrt{2}}{3}$ 4) $\frac{\sqrt{3}}{3}$

- **16.** Решите уравнение $\left(\frac{5}{6}\right)^{x-1} \cdot \left(\frac{4}{5}\right)^x = \frac{16}{45}$.
- 17. Решите систему неравенств: $\begin{cases} \frac{x+1}{\log_2(x-1)} > 0, \\ \log_{11}(x^2+7) < \log_{11}(6x-1). \end{cases}$ 1) (2; 4) 2) (2; + ∞) 3) (4; + ∞) 4) (0; 4)
- **18.** Найдите площадь фигуры, ограниченной двумя прямыми: $y=2x,\ y=x,\ 0\leqslant x\leqslant 3$.
- **19.** Правильный n-угольник вписан в окружность. Её радиус составляет с одной из сторон n-угольника угол 54° . Найдите n.
 - 1) 6 2) 4 3) 5 4) 7
 - 20. Учитель дал задание: из предложенных последовательностей
 - a) $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{4}$; $\frac{1}{5}$; ... 6) $\frac{1}{3}$; $\frac{1}{6}$; $\frac{1}{12}$; $\frac{1}{24}$; ... B) 10; 8; 6; 2;...

выбрать бесконечно убывающую геометрическую прогрессию и найти сумму всех его членов. Если ученик выполнил задание верно, то в ответе он получил.

1)
$$1\frac{2}{3}$$
 2) $\frac{2}{3}$ 3) 3 4) 1

- **21.** В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1$, все рёбра которой равны 3, найдите $|\overrightarrow{C_1E_1} + 2\overrightarrow{FA} + \overrightarrow{D_1D}|$.
 - 1) $\sqrt{2}$ 2) $2\sqrt{2}$ 3) $3\sqrt{2}$ 4) $\sqrt{3}$
 - 22. Значение произведения

$$\frac{x^2 + 3x + 2xy + 6y}{2x^2 + xy + 6x + 3y} \cdot \frac{6x^2 + 2x + 3xy + y}{xy - 2x + 2y^2 - 4y}$$

равно

1)
$$\frac{3x+1}{y-2}$$
 2) $\frac{2x+y}{x+21}$ 3) $\frac{x+3}{2x+y}$ 4) $\frac{x+2y}{x+3}$

23. Решите уравнение: $\log_{\sqrt{3}}(\lg x + 4) = 2$.

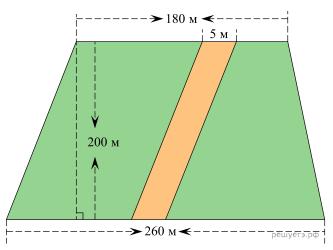
1)
$$\frac{\pi}{4} + \pi k, k \in \mathbb{Z}$$
 2) $\frac{\pi}{3} + \pi k, k \in \mathbb{Z}$ 3) $-\frac{\pi}{3} + \pi k, k \in \mathbb{Z}$ 4) $-\frac{\pi}{4} + \pi k, k \in \mathbb{Z}$

- **24.** Найдите наибольшее целое решение неравенства $3^{x+17} \cdot 5^{-x-16} > 1,08$.
 - 1) -15 2) -14 3) 17 4) 18
- **25.** Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = e^x$, $x_0 = 1$.

1)
$$y = ex$$
 2) $y = e^x$ 3) $y = ex + 1$ 4) $y = ex - 1$

Перед отъездом в Японию, Самат приобрел для хранения важных документов и ценных вещей кодовый сейф с шестизначным кодом, состоящим из цифр 1, 2, 3 и букв M, N, K.

26. Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр и букв?


1) 120

2) 36

3) 720

4) 5040

На рисунке изображен огород трапециевидной формы засеянный овощами (верхнее основание трапеции равно 180 м, нижнее основание равно 260 м, высота равна 200 м) и дорога в виде параллелограмма шириной 5 м, проходящая через огород.

27. Общая площадь огорода и дороги равна

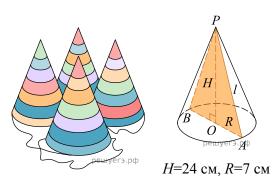
1) 13000 m^2

2) 50000 m^2

 $3)44000 \text{ m}^2$

4) 90000 m^2

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0.7 м \times 1.4 м. На швы и обрезки тратится 10 % от площади крыши.


28. Сколько нужно использовать материала (кровельного железа) для покрытия крыши с учетом швов и обрезок? (округлите до целых). $(\pi = 3, 14)$

1) 52 m^2

2) 45 m^2 3) 37 m^2

4) 25 m^2

Айша изготовила конусообразный головной убор — колпак (см. рис.).

29. Сколько нужно ленты, чтобы обвить края колпака, если $\pi \approx 3$?

1) 42 см

2) 36 см

3) 46 см

4) 40 см

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0.7 м \times 1.4 м. На швы и обрезки тратится 10 % от площади крыши.

30. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?

1) в 24 раза

2) в 64 раза

3) в 13 раз

4) в 16 раз

31. Квадратичная функция задана уравнением $y = (x+2)^2 - 1$. Установите соответствие между нулями функции и координатами вершины параболы.

А) Нули функции	1) (2; -1)
Б) Координаты вершины параболы	2) {3; 2}
	3) {-3; -1}
	4) $(-2; -1)$

32. Площадь диаметрального сечения шара равна 3. Установите соответствие между радиусом шара, площадью его поверхности и числовыми промежутками, которым принадлежат их значения.

А) Радиус шара	1) (3; 5)
Б) Площадь поверхности шара	2) [10; 14)
	3) (0; 1]
	4) (7: 10)

33. Представьте в виде многочлена выражение $(x-2)^4$. Установите соответствия между коэффициентом при x^3 , коэффициентом при x и числовым промежуткам, которым они принадлежат.

```
      A) Коэффициент при x^3
      1) (-8; 1)

      Б) Коэффициент при x
      2) (-10; -7)

      3) (-40; -30)
      4) (10; 21)
```

34. Даны уравнения (x-3)(x-1)=3 и $\sqrt{x^2-4x-1}=2\sqrt{-x}$. Установите соответствия:

А) Каждое число является корнем хотя бы одного из	1) 1, 4, -1
уравнений	2)-1, 0, 4
Б) Ни одно из чисел не является корнем уравнений	3) 1, 4, 2
	4) 1, -2, 2

35. Дана геометрическая прогрессия (b_n) , знаменатель которой равен 2 и $b_1 = -\frac{3}{4}$. Установите соответствие между выражением и его числовым значением.

A)
$$S_6$$

B) $b_6 - b_3$
1) -21
2) -54
3) -47,25
4) 2

36. Если

$$S = \frac{0,536^2 - 0,464^2}{3,6^2 - 7,2 \cdot 2,4 + 2,4^2}$$

то верны следующие утверждения.

1) если
$$S$$
 — это 40% числа k , то $k=0,125$ 2) если S — это 50% числа k , то $k=0,125$ 3) 40% от числа S равны 0,2 4) если S — это 0,2 числа n , то $n=2,5$ 5) 20% числа S меньше 40% числа S на 0,1 6) 40% от числа S равны 0,02

37. Значение выражения
$$6\sin^2\frac{17\pi}{8} + 6\cos^2\frac{17\pi}{8}$$
 равно
1) 0 2) -6 3) 6 4) 3 5) -3 6) 4

38. Значение суммы первых трех членов возрастающей арифметической прогрессии с положительными членами равно 15, а значение суммы их квадратов равно 93. Найдите пятый член этой прогрессии.

39. Решите систему рациональных уравнений

$$\begin{cases} \frac{1}{2x - 3y} + \frac{2}{3x - 2y} = \frac{3}{4}, \\ \frac{3}{2x - 3y} - \frac{4}{3x - 2y} = 1. \end{cases}$$

В ответе укажите значение выражения $\frac{y}{x}$.

1) 2 2)
$$\frac{2}{4}$$
 3) $\frac{3}{6}$ 4) $\frac{3}{5}$ 5) $\frac{4}{8}$ 6) $\frac{1}{2}$

- 40. В основании прямоугольного параллелепипеда лежит прямоугольник со сторонами 3 и 4. Высота параллелепипеда 5. Найдите площадь диагонального сечения прямоугольного параллелепипеда.
 - 1) 20
- 2) $4\sqrt{25}$ 3) $\sqrt{625}$ 4) $\sqrt{400}$ 5) 25 6) $6\sqrt{25}$