При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

**1.** Сократите дробь:  $\frac{\sqrt{70} - \sqrt{30}}{\sqrt{35} - \sqrt{15}}$ 

1) 
$$\sqrt{7}$$
 2)  $\sqrt{5}$  3)  $\sqrt{11}$  4)  $\sqrt{2}$ 

**2.** Если a+b=-3, ab=2, то значение выражения  $a^2b+ab^2$  равно 1)-5 2) -6 3) 5

$$1)-5$$
  $2)-6$   $3)5$   $4)6$ 

**3.** Найдите значение выражения  $59 \, \text{tg} \, 56^{\circ} \cdot \text{tg} \, 34^{\circ}$ .

**4.** Приведите одночлен  $a^2b^7a^{-1}b^5$  к стандартному виду.

1) 
$$a^2b^{12}$$
 2)  $a^2b^2$  3)  $ab^{12}$  4)  $ab^5$ 

**5.** Числитель дроби на 4 меньше ее знаменателя. Если эту дробь сложить с обратной ей дробью, то получится число  $\frac{106}{45}$ . Найдите исходную дробь

1) 
$$\frac{3}{7}$$
 2)  $\frac{9}{13}$  3)  $\frac{11}{15}$  4)  $\frac{5}{9}$ 

6. Решите систему уравнений

$$\begin{cases} 2y = 5x, \\ x + y = 14. \end{cases}$$

Для полученного решения  $(x_0; y_0)$  укажите произведение  $x_0 \cdot y_0$ .

7. Найдите неопределённый интеграл  $\int \left( \left( \frac{3}{5} \right)^{4x-2} - 2^{3x-4} - 5^{1-5x} \right) dx$ .

1) 
$$\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} - \frac{2^{3x-4}}{3\ln2} + \frac{5^{-5x}}{\ln5} + C$$
2) 
$$\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} - \frac{2^{3x-4}}{\ln2} + \frac{5^{-5x}}{\ln5} + C$$
3) 
$$\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln2} + \frac{5^{-5x}}{\ln5} + C$$
4) 
$$\frac{\left(\frac{5}{3}\right)^{2-4x}}{2\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln2} + \frac{5^{-5x}}{\ln3} + C$$

**8.** Найдите образующую равностороннего конуса, если площадь осевого сечения равна  $16\sqrt{3}$  см<sup>2</sup>.

(Примечание Решу ЕНТ: видимо, равносторонним конусом составители задания называют такой, у которого осевое сечение равносторонний треугольник.)

**9.** Решите систему неравенств  $\begin{cases} x^2 \ge 2,25, \\ (x+2)^2 \le 1. \end{cases}$ 

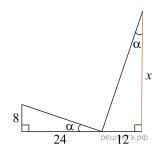
**10.** Из предложенных ниже вариантов найдите серию, содержащую все решения уравнения  $\sin 3x + \cos 3x = 0$ .

1) 
$$-\frac{\pi}{12} + 3\pi n, n \in \mathbb{Z}$$
 2)  $-\frac{\pi}{12} + \frac{\pi n}{3}, n \in \mathbb{Z}$  3)  $-\frac{\pi}{12} + 2\pi n, n \in \mathbb{Z}$  4)  $\frac{\pi}{12} + \frac{\pi n}{3}, n \in \mathbb{Z}$ 

**11.** Найдите первообразную функции  $f(x) = 4(3x+2)\sqrt{x}$ , проходящую через точку (1; 5).

1) 
$$\frac{24}{5}x^{\frac{5}{2}} - \frac{16}{3}x^{\frac{3}{2}} - 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}$$
 2)  $\frac{24}{5}x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} - \frac{77}{15}$  3)  $x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}$ .

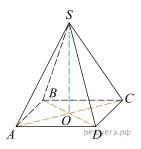
**12.** Решите неравенство:  $\frac{8}{4x-2} < 0$ .


1) 
$$(-\infty; 1)$$
 2)  $\left(-\infty; \frac{1}{2}\right)$  3)  $\left(\frac{1}{2}; +\infty\right)$  4)  $\left(-\infty; \frac{1}{2}\right]$ 

$$\left(-\infty; \frac{1}{2}\right)$$

3) 
$$\left(\frac{1}{2}; +\infty\right)$$

4) 
$$\left(-\infty; \frac{1}{2}\right]$$


**13.** По данным рисунка найдите значение x.



- 1) 36 2) 19 3) 18 4) 12
- **14.** Вычислите  $\int \sqrt{x+1} dx$ .

1) 
$$\frac{2^{\frac{3}{2}}-2}{3}$$
 2)  $\frac{2^{\frac{5}{2}}-2}{3}$  3)  $\frac{2^{\frac{3}{2}}-2}{5}$  4)  $\frac{2^{\frac{3}{2}}+2}{3}$ 

15. Найдите высоту пирамиды, каждое боковое ребро которой равно 10 см и в основании квадрат со стороной  $6\sqrt{2}$  см.



- 1)  $8\sqrt{2}$  cm. 2) 8 cm 3) 6 cm 4)  $6\sqrt{2}$  cm.
- **16.** Решите уравнение  $2^{4x} + 2^{3x} + 2^x = 4 \cdot 2^{2x} 1$ .

1) 
$$\frac{1}{2}$$
 2)  $\frac{1}{4}$  3) 0 4) -1

**17.** Решите систему уравнений:  $\begin{cases} \log_3 x + \log_3 y = 1, \\ y + 2x = 7. \end{cases}$ 

1) 
$$\left(\frac{1}{2}; 4\right)$$
,  $(2; 1)$  2)  $(1; 6)$ ,  $(2; 1)$  3)  $\left(\frac{1}{2}; 6\right)$ ,  $(3; 1)$  4)  $\left(\frac{1}{2}; 3\right)$ ,  $(2; 2)$ 

**18.** Найдите площадь фигуры, ограниченной прямой и параболой:  $y = -x^2 + 2x$ , y = -x - 1.

1) 
$$\frac{13^{\frac{1}{2}}}{6}$$
 2)  $\frac{13^{\frac{3}{2}}}{6}$  3)  $\frac{13^{\frac{3}{4}}}{6}$  4)  $\frac{13^{\frac{3}{2}}}{4}$ 

- 19. Прямоугольник ABCD вписан в окружность. Дуга BC равна 40°. Меньший угол между диагоналями прямоугольника равен? 1) 55° 2) 20° 3) 35° 4) 40°
- 20. Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов равна 31. Найдите первый член прогрессии.
  - 1) 32 2) 16 3) 12
  - **21.** Если  $\vec{a}(5; -1), \vec{b}(-4; 1),$  то длина вектора  $\vec{c} = 2\vec{a} + \vec{b}$  равна
    - 1)  $\sqrt{34}$  2)  $\sqrt{37}$  3)  $\sqrt{35}$  4)  $\sqrt{41}$
  - **22.** Упростите выражение:  $\frac{a^4 \cdot a^{-7}}{(a^2)^{-4}}$ .

|   | 1) $a^{-5}$                             | 2              | 2) $a^3$                    | 3) $a^{-2}$ | 4) $a^5$ |
|---|-----------------------------------------|----------------|-----------------------------|-------------|----------|
| 2 | Vrongura unavanavana kanyaŭ unanvavag e | $\log_3 x + 1$ | <b>5</b> log <sub>5</sub> 9 |             |          |

**23.** Укажите произведение корней уравнения:  $x^{\log_3 x + 1} = 5^{\log_5 y}$ .

| 1) 1 | 2) 3 | 3) $\frac{1}{9}$ | 4) $\frac{1}{3}$ |
|------|------|------------------|------------------|
|      |      | 2                | J                |

**24.** Решите неравенство:  $\sqrt{5+x} \cdot \sqrt{5-x} > 0$ . 1) [-5; 5] 2) (-5; 5) 3)  $(-\infty; 5)$  4)  $(5; +\infty)$ 

**25.** Напишите уравнение касательной к графику функции 
$$f(x) = x^2 - x - 12$$
 в точке  $x_0 = 5$ .

1) y = 6x - 37 2) y = 9x - 37 3) y = 9x - 34 4) y = 9x - 38

В крестьянском хозяйстве взвесили клубни картофеля. Массы клубней (в граммах) приведены в таблице.

| 60 | 59 |
|----|----|
| 57 | 59 |
| 56 | 58 |
| 61 | 61 |
| 58 | 59 |

26. Определите объем выборки.

27. Найдите моду вариационного ряда.

Бросают одновременно два игральных кубика, на гранях которых расположены числа от 1 до 6.

28. Сколькими способами может выпасть в сумме число 5?

29. Сколькими способами может выпасть в сумме четное число?

30. Какова вероятность того, что сумма чисел на двух игральных кубиках будет четным числом.

1) 
$$\frac{1}{2}$$
 2)  $\frac{1}{6}$  3)  $\frac{1}{4}$  4)  $\frac{1}{9}$ 

**31.** Функция задана уравнением  $y = \cos x - 4$ . Установите соответствие между наибольшим и наименьшим значениями функции и их числовыми значениями.

32. Три окружности радиусами 2 каждая попарно касаются внешним образом. Установите соответствие между длиной стороны треугольника, образованного центрами окружностей, его площадью и их числовыми значениями.

A) Длина стороны треугольника1) 
$$4\sqrt{3}$$
Б) Площадь треугольника2) 23) 164) 4

**33.** Представьте в виде многочлена выражение  $(2x-3)^3\sqrt{x^2-4x+4}$ , если известно, что x>2. Установите соответствия между коэффициентом при х, суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

A) Коэффициент при 
$$x$$
 1) ( $-150$ ;  $-120$ )   
 Б) Сумма коэффициентов многочлена 2) ( $-10$ ;  $5$ ] 3) [ $10$ ;  $30$ )   
  $4$ ) ( $-110$ ;  $-80$ )

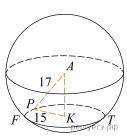
- **34.** Даны уравнения  $x^2 11x + 24 = 0$  и  $(0,25)^{2-x} = \frac{128}{2x+2}$ . Установите соответствия:
- А) Число является корнем первого уравнения, но не является корнем второго уравнения

1)2 2)8

Б) Число является корнем обоих уравнений

- 3) 1 4) 3
- **35.** В арифметической прогрессии  $(a_n)$  третий член равен 20, разность прогрессии d = -3,2. Установите соответствие между выражением и его числовым значением.
  - A)  $a_1$ Б)  $S_6$

- 1) 100,8
- 2) 110,4
- 3) 26,4
- 4) 16,8


- **36.** Упростите:  $|\sqrt{7} + \sqrt{5} 4| + |\sqrt{7} + \sqrt{5} 5|$ .
  - 1)  $2\sqrt{7} 2\sqrt{5} 1$  2)  $2\sqrt{7}$  3) 1 4)  $2\sqrt{5} + 2\sqrt{7} + 1$  5) 2 6)  $2\sqrt{5} + 2\sqrt{7} 1$

- 37. Значение выражения  $\sin\left(\frac{\pi}{4}+\alpha\right)-\cos\left(\frac{\pi}{4}-\alpha\right)$  равно

- 1)  $-\frac{\sqrt{3}}{2}$  2) 0 3)  $\frac{\sqrt{3}}{2}$  4)  $\frac{1}{2}$  5) -1 6) 1
- 38. Найдите первый член арифметической прогрессии с разностью 8, если сумма первых 20 ее членов равна сумме следующих за ними 10 членов.
  - 1) 28

- 4) 54 5)  $\sqrt{1764}$  6)  $\sqrt{1296}$
- **39.** Найдите отношение  $\frac{x}{y}$ , где (x;y) решение системы уравнений:  $\begin{cases} 3^x \cdot 3^y = 27, \\ 10^{\lg(x-y)} = 5. \end{cases}$ 
  - 1)  $-\left(\frac{1}{4}\right)^{-1}$  2) 4 3) 8 4)  $\left(\frac{1}{4}\right)^{-1}$  5) 1 6) -4

- **40.** Точка A центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.



- 1)  $306\pi$  2)  $\frac{200}{3}\pi$  3)  $\frac{500}{3}\pi$  4)  $208\pi$  5)  $\frac{100}{3}\pi$  6)  $108\pi$