При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Вычислите:
$$|3 - |\sqrt{3} - 4|$$
.

1)
$$\sqrt{3} - 7$$
 2) $1 - \sqrt{3}$ 3) $7 - \sqrt{3}$ 4) $\sqrt{3} - 1$

2. Найдите значение выражения
$$\left(a + \frac{1}{a} + 2\right) \cdot \frac{1}{a+1}$$
 при $a = -5$.

3. Найдите значение выражения
$$5 \sin \frac{11\pi}{12} \cdot \cos \frac{11\pi}{12}$$
.

4. Укажите верное разложение на множители многочлена $a^2 + 4ab + 3b^2$.

1)
$$(a+b)(a+2b)$$
 2) $(a+3b)(a+b)$ 3) $(a+b)(3a+b)$ 4) $(a+3b)(3a+b)$

5. Сумма корней квадратного уравнения
$$-3x^2 + 5x + 8 = 0$$
 равна

1)
$$\frac{1}{5}$$
 2) $\frac{3}{5}$ 3) $\frac{5}{3}$ 4) $\frac{2}{3}$

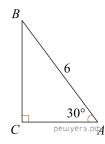
6. Решите систему уравнений
$$\begin{cases} 3x - 2y = 4, \\ 5x + 2y = 20. \end{cases}$$
1) (3; -2,5) 2) (2,5; 3) 3) (-2,5; -3) 4) (3; 2,5)

7. Найдите неопределённый интеграл
$$\int (2\cos 2x - 3\sin 3x)dx$$
.

1)
$$\cos 2x + \sin 3x + C$$
 2) $\sin 2x - \cos 3x + C$ 3) $\sin x + \cos x + C$
4) $\sin 2x + \cos 3x + C$

8. Образующая конуса равна 6 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$9\pi$$
 2) 32π 3) 18π 4) 27π

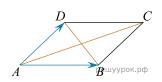

9. Решите систему неравенств: $\begin{cases} (x-1)(x-8) > 0, \\ x^2 - 6x + 8 \geqslant 0. \end{cases}$

1)
$$(-\infty; 1) \cup (8; +\infty)$$
 2) $(-\infty; 2] \cup [4; +\infty)$ 3) $(-\infty; 2) \cup (4; +\infty)$ 4) $[2; 4]$

10. Какое из приведенных уравнений не имеет корней?

1)
$$\sin x = \frac{\sqrt{3}}{2}$$
 2) $\tan x = \frac{\sqrt{3}}{2}$ 3) $\cot x = -\frac{2}{\sqrt{3}}$ 4) $\cos x = \frac{2}{\sqrt{3}}$

- **11.** Из ниже перечисленных ответов, укажите одну из первообразных для функции $f(x) = \frac{4}{x}$, при x > 0.
 - 1) $F(x) = 4 \ln x$ 2) $F(x) = -4 \ln x$ 3) $F(x) = \frac{1}{4} \ln x$ 4) $F(x) = -\frac{1}{4} \ln x$
 - **12.** Решите неравенство: $\frac{4}{2x-9} > 0$.
 - 1) (-4; 4) 2) $(-4, 5; +\infty)$ 3) $(-\infty; 4, 5)$ 4) $(4, 5; +\infty)$
 - 13. Используя чертеж, вычислите площадь треугольника АВС.


- 1) $\frac{9\sqrt{3}}{2}$ 2) $9\sqrt{3}$ 3) $\frac{3\sqrt{3}}{2}$ 4) 9
- **14.** Вычислите интеграл: $\int_{-5}^{1} (x+2)^2 dx.$ 1) 23 2) -10 3) 15 4) 18
- **15.** Из точки к плоскости проведены перпендикуляр и наклонна под углом 30° к ее проекции. Найдите длину наклонной, если длина перпендикуляра 12 см.
 - 1) 8 cm 2) 6 cm 3) 24 cm 4) 12 cm
 - **16.** Решите дробно-иррациональное уравнение $2\sqrt{x-3} \frac{1}{\sqrt{x-3}} = 1$.
 - 1) 4 2) 1 3) 0 4) 2
 - 17. Решите систему неравенств

$$\begin{cases} 2^{x+3} < \left(\frac{1}{\sqrt{2}}\right)^{6-8x}, \\ (0,2)^{x^2 - 4x - 12} > 1. \end{cases}$$

- 1) (0; 6) 2) (0; 1) 3) (-2; 6) 4) (2; 6)
- **18.** Найдите площадь фигуры, ограниченной двумя прямыми: $y=10x-15,\ y=-5x+2,\ -3\leqslant x\leqslant 5.$
 - 1) $\frac{3607}{15}$ 2) $\frac{3604}{11}$ 3) $\frac{3604}{15}$ 4) $\frac{3614}{15}$
 - **19.** В трапеции углы при основании равны 18° и 104° . Найти наибольший угол трапеции.
 - 1) 76° 2) 162° 3) 18° 4) 104°
 - 20. Сумма семи первых членов геометрической прогрессии 48; 24; ... равна?
 - 1) 97,75 2) 95,25 3) 63,25 4) 94,50

21. На рисунке изображён ромб АВСД. Найдите скалярное произведение

векторов: a) $\overrightarrow{DB} \cdot \overrightarrow{AC}$, б) $\overrightarrow{AB} \cdot \overrightarrow{AC}$, в) $\overrightarrow{AB} \cdot \overrightarrow{AD}$, если DB = 10, AC = 24.

- 1) a) 0; б) 292; в) 121
- 2) a) 1; б) 288; в) 119
- 3) a) 0; б) 288; в) 119
- 4) a) 0; б) 282; в) 119

22. Упростите выражение: $\frac{x+y-2\sqrt{xy}}{\sqrt{y}-\sqrt{x}}.$

1)
$$(\sqrt{y} + \sqrt{x})^2$$

1)
$$(\sqrt{y} + \sqrt{x})^2$$
 2) $(\sqrt{y} - \sqrt{x})^2$ 3) $\sqrt{y} + \sqrt{x}$ 4) $\sqrt{y} - \sqrt{x}$

3)
$$\sqrt{y} + \sqrt{x}$$

4)
$$\sqrt{y} - \sqrt{x}$$

23. Решите уравнение: $\sqrt{2 - \log_2 x} = \log_2 x$.

1) 2 2) 4 3)
$$\frac{3}{5}$$
 4) $\frac{1}{4}$

24. Решите простейшее тригонометрическое неравенство $tg x \ge -\sqrt{3}$

1)
$$\left[\frac{\pi}{3} + \pi k; \frac{\pi}{2} + \pi k\right)$$
, $k \in \mathbb{Z}$ 2) $\left[-\frac{\pi}{3} + \pi k; \frac{\pi}{2} + \pi k\right]$, $k \in \mathbb{Z}$ 3) $\left[-\frac{\pi}{3} + \pi k; \frac{\pi}{2} + 2\pi k\right)$, $k \in \mathbb{Z}$ 4) $\left[-\frac{\pi}{3} + \pi k; \frac{\pi}{2} + \pi k\right)$, $k \in \mathbb{Z}$

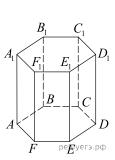
25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если

$$f(x) = \left(\frac{1}{3}\right)^x, \ x_0 = 2.$$

1)
$$y = -\frac{\ln 3}{9}x + \frac{1 - 2\ln 3}{9}$$
 2) $y = -\frac{\ln 3}{9}x + \frac{2\ln 3}{9}$ 3) $y = -\frac{\ln 3}{9}x + \frac{1 + 2\ln 3}{9}$

$$2) y = -\frac{\ln 3}{9}x + \frac{2\ln 3}{9}$$

$$\ln 3 \qquad 1 - 2\ln 3$$


3)
$$y = -\frac{\ln 3}{9}x + \frac{1 + 2\ln 3}{9}$$

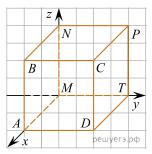
4)
$$y = \frac{\ln 3}{9}x + \frac{1 - 2\ln 3}{9}$$

Бросают одновременно два игральных кубика, на гранях которых расположены числа от 1 до 6.

26. Количество способов выпадения четного числа равна

Учитель дал домашнее практическое задание по геометрии. Сделать макет призмы и составить к ним задания. Самат подготовил макет правильной шестиугольной призмы со стороной основания равной 1, а боковое ребро 2 и составил следующие задания.

27. Определите длину полученного вектора.


1)
$$\sqrt{5}$$

2)
$$\sqrt{2}$$

3)
$$\sqrt{3}$$

1)
$$\sqrt{5}$$
 2) $\sqrt{2}$ 3) $\sqrt{3}$ 4) $\sqrt{6}$

Для изготовления стальных дизайнерских шаров, завод получил заготовки в виде куба. Программная установка для обтачивания деталей требует ввода координат заготовки в трёхмерном пространстве. Программист вводит систему координат в вершину куба как показано на рисунке.

28. Определите координаты точки C.

29. Определите координаты центра шара вписанного в данный куб.

4) (4; 4; 4)

30. Для изготовления детали в форме шара составьте его уравнение.

1)
$$(x+2)^2 + (y+2)^2 + (z+2)^2 = 4$$

2) $(x+2)^2 + (y+2)^2 + (z+2)^2 = 2$
3) $(x-2)^2 + (y-2)^2 + (z-2)^2 = 2$
4) $(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$

31. Функция задана уравнением $y = \sin x + 2$. Установите соответствие между наибольшим и наименьшим значениями функции и их числовыми значениями.

32. В цилиндр вписан шар, радиус которого равен 6. Установите соответствие между площадью полной поверхности цилиндра, объемом цилиндра и их числовыми значениями.

А) Площадь полной поверхности цилиндра	1) 324π
Б) Объем цилиндра	2) 432π
	3) 216π
	4) 288π

33. Представьте в виде многочлена выражение $(x+1)(x+4)(x+2)^2$. Установите соответствия между коэффициентом при x^3 , суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

1) (30; 60) 2) (8; 12] 3) [70; 90] 4) [4; 9)
2

34. Даны уравнения $x^2 - 5x + 6 = 0$ и 2x(x-2) = 0. Установите соответствия:

А) Каждое число является корнем хотя бы одного из	1) 2, 3, 4
уравнений	2) 0, 2, 3
Б) Ни одно из чисел не является корнем уравнений	3)-1, 4, 6
	4)-1, 0, 1

35. Выписаны несколько первых членов геометрической прогрессии: 17, 68, 272, ... Установите соответствие между выражением и его числовым значением.

A)
$$b_4$$
 1) 1088
B) S_4 2) 816
3) 1225
4) 1445

36. Выберите промежутки,	в которые	входит	приближенное	значение	величины	угла	30°,	выра-
женного в радианах.								

1) [0; 1) 2) (100; 1000] 3) (0,75; 7] 4) (0; 0,0615] 5) $(0,5; +\infty)$ 6) $[0; +\infty)$

37. Значение выражения $7\cos^2 34^\circ + 10\sin 30^\circ + 7\sin^2 34^\circ$ равно:

1) 12 2) 17 3) 24 4) $7 + 10\sqrt{3}$ 5) $14 + 5\sqrt{3}$ 6) 2

38. Сумма трех чисел, составляющих арифметическую прогрессию, у которой разность больше нуля, равна 12. Если к этим числам прибавить соответственно 2, 5 и 20, то полученные числа составляют первые три члена геометрической прогрессии. Найдите эти три числа.

1) 1 2) 6 3) 4 4) 2 5) 5 6) 7

39. Решите систему показательных уравнений

$$\begin{cases} 9^{x+y} = 729, \\ 3^x : 3^{y+1} = 1. \end{cases}$$

В ответе укажите значение выражения $\frac{x}{y}$.

1) 2 2) 1 3) $\sqrt{9}$ 4) 4 5) 3 6) $\sqrt{4}$

40. Через вершину острого угла прямоугольного треугольника ABC с прямым углом C проведена прямая AD, перпендикулярная плоскости треугольника. Найдите расстояние от точки D до вершины B, если AC = 8, BC = 9 и AD = 10.

1) $7\sqrt{5}$ 2) $\sqrt{145}$ 3) $\sqrt{245}$ 4) 132 5) $\sqrt{125}$ 6) $5\sqrt{7}$