При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Упростите выражение: $(0,2\sqrt{11}+1)(1-0,2\sqrt{11})$.

$$3) -0.56$$

$$4) -0.73$$

2. Упростите выражение $\frac{2c-4}{cd-2d}$ и найдите его значение при $c=0,5;\ d=5.$ 1) 1 2) 0,4 3) 0,2 4) 0,

3. Найдите значение выражения: ctg $\left(\arcsin\frac{1}{2}\right)$.

1) 1 2)
$$\frac{\sqrt{3}}{2}$$
 3) $\sqrt{3}$ 4) $\frac{\sqrt{2}}{2}$

$$\frac{\overline{3}}{2}$$
 3

4)
$$\frac{\sqrt{2}}{2}$$

4. Разложите квадратный трехчлен $2x^2 + 8x + 6$ на множители.

1)
$$(2x+2)(x+3)$$

2)
$$(x+2)(x+3)$$

1)
$$(2x+2)(x+3)$$
 2) $(x+2)(x+3)$ 3) $(2x+3)(x+2)$ 4) $(2x+1)^2$

4)
$$(2x+1)^2$$

5. Укажите уравнение, не являющееся линейным уравнением с двумя переменными.

1)
$$\frac{5}{7}x - y = 7$$

2)
$$\frac{5}{7x} - y = -\frac{1}{2}$$

3)
$$\frac{5x}{7} + y =$$

1)
$$\frac{5}{7}x - y = 7$$
 2) $\frac{5}{7x} - y = -7$ 3) $\frac{5x}{7} + y = 7$ 4) $\frac{5x}{7} - y = -7$

6. Решите систему уравнений: $\begin{cases} 81x^2 = 99 + y^2, \\ y = 9x - 3. \end{cases}$

7. Найдите неопределённый интеграл $\int \left(\frac{3-x}{\sqrt[3]{x}} - \frac{x+5}{\sqrt[3]{x}}\right) dx$.

1)
$$\frac{1}{30}\sqrt{x}(18x^{\frac{7}{6}} + 20x - 135\sqrt[6]{x} + 300) +$$

1)
$$\frac{1}{30}\sqrt{x}(18x^{\frac{7}{6}} + 20x - 135\sqrt[6]{x} + 300) + C$$
 2) $-\frac{1}{30}\sqrt{x}(18x^{\frac{11}{6}} + 20x - 135\sqrt[6]{x} + 300) + C$ 3) $-\frac{1}{30}\sqrt{x}(18x^{\frac{7}{6}} + 20x - 135\sqrt[6]{x} + 300) + C$ 4) $-\frac{1}{30}\sqrt{x}(18x^{\frac{7}{6}} + 30x - 135\sqrt[6]{x} + 300) + C$

3)
$$-\frac{1}{30}\sqrt{x}(18x^{\frac{7}{6}}+20x-135\sqrt[6]{x}+300)+C$$

4)
$$-\frac{1}{30}\sqrt{x}(18x^{\frac{7}{6}} + 30x - 135\sqrt[6]{x} + 300) + C$$

8. В шар радиусом 5 м вписан цилиндр с диаметром основания 6 м. Высота цилиндра равна

9. Решите систему неравенств $\begin{cases} x^2 \geqslant 2,25, \\ (x+2)^2 \le 1. \end{cases}$

10. Решите уравнение $\sqrt{2}\cos^2 x - \cos x = 0$ и найдите сумму его корней на $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

1)
$$\frac{\pi}{4}$$
 2) $-\pi$ 3) 0 4) $\frac{\pi}{8}$

4)
$$\frac{\pi}{8}$$

11. Найдите первообразную функции $f(x) = 4(3x+2)\sqrt{x}$, проходящую через точку (1; 5).

$$1) \ \frac{24}{5}x^{\frac{5}{2}} - \frac{16}{3}x^{\frac{3}{2}} - 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}} \qquad 2) \ \frac{24}{5}x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} - \frac{77}{15} \qquad 3) \ x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}.$$

2)
$$\frac{24}{5}x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} - \frac{77}{15}$$

3)
$$x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{5}{2}}$$

4)
$$\frac{24}{5}x^{\frac{5}{2}} + \frac{16}{3}x^{\frac{3}{2}} + 4 - \frac{24}{5} \cdot 8^{\frac{5}{2}} - \frac{16}{3} \cdot 8^{\frac{3}{2}}$$
.

12. Решите неравенство: $\frac{8}{4x-2} < 0$.

2)
$$\left(-\infty; \frac{1}{2}\right)$$

3)
$$\left(\frac{1}{2}; +\infty\right)$$

1)
$$(-\infty; 1)$$
 2) $\left(-\infty; \frac{1}{2}\right)$ 3) $\left(\frac{1}{2}; +\infty\right)$ 4) $\left(-\infty; \frac{1}{2}\right]$

13. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка (как показано на рисунке), длины которых равны 15 и 2, считая от вершины. Найдите длину основания треугольника.

- 1) 7 2) 4 3) 6 4) 2
- **14.** Вычислите $\int_{0}^{1} \sqrt{x+1} dx.$

1)
$$\frac{2^{\frac{3}{2}}-2}{3}$$
 2) $\frac{2^{\frac{5}{2}}-2}{3}$ 3) $\frac{2^{\frac{3}{2}}-2}{5}$ 4) $\frac{2^{\frac{3}{2}}+2}{3}$

15. Найдите объем правильной усеченной четырехугольной пирамиды, стороны основания которой равны 9 см и 25 см, а высота 18 см.

- 1) 4308 cm^3 2) 5586 cm^3 3) 5896 cm^3 4) 3888 cm^3
- **16.** Решите уравнение $\sqrt{2x+3}-\sqrt{x+3}=0$. 1) -1 2) 0 3) 3 4) -2
- 17. Решите систему уравнений: $\begin{cases} \left(\sqrt[x-1]{7}\right)^2 \sqrt[y-1]{343} = 0, \\ 3^y = \left(\frac{1}{9}\right)^{y-2x} \end{cases}$ 1) $\left(-1;\frac{1}{2}\right)$ 2) (3;4) 3) (1;-2) 4) $\left(3;\frac{\sqrt{7}}{4}\right)$
- **18.** Найдите площадь фигуры, ограниченной прямой и параболой: $y = x^2$, y = -x 2, $-3 \le x \le 2$.

 1) $\frac{115}{6}$ 2) $\frac{117}{6}$ 3) $\frac{111}{6}$ 4) $\frac{115}{8}$
- 19. Найдите площадь равнобедренной трапеции, если ее диагональ равна 25, а высота 7.
 - 1) 174 2) 84 3) 128 4) 168
- 20. Сумма семи первых членов геометрической прогрессии 48; 24; ... равна?
 - 1) 97,75 2) 95,25 3) 63,25 4) 94,50
- **21.** Найдите координаты вектора \vec{a} , если $\vec{a}=2\vec{p}-\vec{i}$, $\vec{p}=(3;1)$, $\vec{i}=(2;-2)$. 1) (4; 2) 2) (3; 5) 3) (0; 6) 4) (4; 4)
- **22.** Избавьтесь от иррациональности в знаменателе: $\frac{1}{\sqrt{x-y}}$.

 1) $\frac{x-y}{y}$ 2) $\sqrt{x+y}$ 3) $\sqrt{x-y}$ 4) $\frac{\sqrt{x-y}}{y-y}$
- **23.** Решите уравнение $\log_5(x-8)^2=2+2\log_5(x-2)$. $1)\;\frac{1}{2}\qquad 2)\;3\qquad 3)\;6\qquad 4)\;\frac{1}{4}$
- **24.** Решите простейшее тригонометрическое неравенство $2\sin x \geqslant -\sqrt{3}$.
- 1) $\left(\frac{\pi}{3} + 2\pi k; \frac{2\pi}{3} + 2\pi k\right)$, $k \in \mathbb{Z}$ 2) $\left(\frac{-5\pi}{6} + 2\pi k; -\frac{\pi}{6} + 2\pi k\right)$, $k \in \mathbb{Z}$ 3) $\left(\frac{-3\pi}{4} + 2\pi k; -\frac{\pi}{3} + 2\pi k\right)$, $k \in \mathbb{Z}$ 4) $\left(\frac{5\pi}{6} + 2\pi k; \frac{\pi}{6} + 2\pi k\right)$, $k \in \mathbb{Z}$

25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = \lg x$, $x_0 = \frac{\pi}{6}$.

1)
$$y = -\frac{4}{3}x - \frac{2\pi}{9} + \frac{\sqrt{3}}{3}$$
 2) $y = \frac{4}{3}x - \frac{2\pi}{9} + \frac{\sqrt{3}}{3}$ 3) $y = \frac{4}{3}x + \frac{\sqrt{3}}{3}$ 4) $y = \frac{4}{3}x - \frac{2\pi}{9} + \frac{1}{3}$

2)
$$y = \frac{4}{3}x - \frac{2\pi}{9} + \frac{\sqrt{3}}{3}$$

3)
$$y = \frac{4}{3}x + \frac{\sqrt{3}}{3}$$

4)
$$y = \frac{4}{3}x - \frac{2\pi}{9} + \frac{1}{3}$$

В крестьянском хозяйстве взвесили клубни картофеля. Массы клубней (в граммах) приведены в таблице.

60	59
57	59
56	58
61	61
58	59

26. Определите объем выборки.

1 \	1 5
	רו
.,	10

27. Найдите моду вариационного ряда.

28. Разность между самым легким и тяжелым клубнем равна

Бросают одновременно два игральных кубика, на гранях которых расположены числа от 1 до 6.

29. Сколькими способами может выпасть в сумме четное число?

В крестьянском хозяйстве взвесили клубни картофеля. Массы клубней (в граммах) приведены в таблице.

60	59
57	59
56	58
61	61
58	59

30. Для данной выборки определите математическое ожидание массы клубня. Ответ округлите до целых.

31. Квадратичная функция задана уравнением $y = x^2 - 1$. Установите соответствие между нулями функции и координатами вершины параболы.

А) Нули функции

Б) Координаты вершины параболы

32. Вписанная окружность разделила гипотенузу треугольника на отрезки 4 и 6. Установите соответствие между длинами катетов треугольника и числовыми промежутками, которым принадлежат их значения.

А) Больший катет треугольника

1)(3;5)

Б) Меньший катет треугольника

- 2) (7; 9) 3) (6; 7)
- 4) [5; 6]

33. Найдите два натуральных числа х и у, если известно, что разность чисел х и у равна 1, а сумма квадратов этих чисел равно 41.

А) Число х принадлежит промежутку

1) (5; 7)

Б) Число у принадлежит промежутку

- 2)(0;1)
- 3) [5; 6]
- 4) (1; 4]

- **34.** Даны уравнения (x+1)(x-2) = (x-2)(5x-3) и $(x-1)\sqrt{x^2-2x-3} = 0$. Установите соответствия:
- А) Каждое число является корнем хотя бы одного из уравнений

1) 1, 3, -32) 0, -3, 4

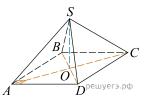
Б) Ни одно из чисел не является корнем уравнений

- 3) 2, 3, 7 4)-1, 2, 3
- **35.** У геометрической прогрессии (b_n) известно, что $b_1=2,\ q=-2$. Установите соответствие между выражением и его числовым значением.

- 1) 32
- 2) 16
- 3) 11

- **36.** Укажите выражения, значения которых численно равны $\sqrt{3}$.
 - $1) 2\sin 60^{\circ}$

- 2) $\sin \frac{\pi}{3}$ 3) $tg45^{\circ}$ 4) $2tg30^{\circ}$ 5) $ctg30^{\circ}$ 6) $-ctg\frac{\pi}{3}$
- 37. Найдите значение выражения $\cot g \frac{5\pi}{3} \sin \frac{3\pi}{4} tg \frac{5\pi}{6} \cos \frac{4\pi}{3}$.


1)
$$-\frac{\sqrt{3}}{12}$$
 2) $\frac{\sqrt{3}}{4}$ 3) $-\frac{\sqrt{2}}{12}$ 4) $-\frac{\sqrt{3}}{18}$ 5) $\frac{\sqrt{3}}{18}$ 6) $\frac{1}{6}$

- 38. Значение суммы первых трех членов возрастающей арифметической прогрессии с положительными членами равно 15, а
- значение суммы их квадратов равно 93. Найдите пятый член этой прогрессии. 1) 20 5) 15 2) 18 3) 14 6) 12
 - 39. Решите систему

$$\begin{cases} 2^x \cdot 3^y = 12, \\ 2^y \cdot 3^x = 18. \end{cases}$$

В ответе укажите значение выражения 2x + 3y.

- 1) $\sqrt{49}$ 2) $\sqrt[3]{343}$ 3) 8 4) 5 5) $\sqrt{81}$
- **40.** Дана SABCD пирамида, SO высота, ABCD прямоугольник. Вычислите площадь полной поверхности пирамиды, если AD = 6, DC = 8 и SO = 4.

- 1) $8(11+3\sqrt{2})$ 2) $11+3\sqrt{2}$ 3) 15 4) $4(22+6\sqrt{2})$ 5) $16(2+3\sqrt{2})$

- 6) 17