При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Вычислите: $6\sqrt{3} - \sqrt{27} - \sqrt{48}$.

1)
$$\sqrt{3}$$
 2) $-\sqrt{3}$ 3) $-2\sqrt{3}$ 4) -1

2. Упростите выражение $\frac{9b}{a-b} \cdot \frac{a^2-ab}{54b}$ и найдите его значение при $a=-63,\ b=9,6.$

$$(-10.5)$$
 (-2) (-21) (-2) $(-2$

3. Найдите значение выражения: $\left(\cos\frac{5\pi}{12} + \cos\frac{\pi}{12}\right) \cdot \left(\sin\frac{\pi}{12} - \sin\frac{5\pi}{12}\right)$.

1)
$$-\frac{\sqrt{3}}{2}$$
 2) 1 3) $\frac{\sqrt{2}}{2}$ 4) $\sqrt{3}$

4. Упростите выражение и запишите в стандартном виде: $(a+5)^2 - 5a(2-a)$.

1)
$$-4a^2+25$$
 2) $6a^2+25$ 3) $-a^2+25$ 4) $6a^2-25$

5. Из данных пар чисел укажите ту, которая является решением уравнения 6x - 5y + 12 = 0.

1)
$$(2; 1)$$
 2) $(3; -2)$ 3) $(5; 6)$ 4) $(0; 2,4)$

6. Решите систему уравнений

$$\begin{cases} x^2 - y^2 = 7, \\ 3x + 3y = 63. \end{cases}$$

Найдите разность x - y.

1) 14 2) 147 3) -3 4)
$$\frac{1}{3}$$

7. Найдите неопределённый интеграл $\int \left(\left(\frac{3}{5} \right)^{4x-2} - 2^{3x-4} - 5^{1-5x} \right) dx$.

1)
$$\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} - \frac{2^{3x-4}}{3\ln2} + \frac{5^{-5x}}{\ln5} + C$$
 2) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} - \frac{2^{3x-4}}{\ln2} + \frac{5^{-5x}}{\ln5} + C$ 3) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{4\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln2} + \frac{5^{-5x}}{\ln5} + C$ 4) $\frac{\left(\frac{5}{3}\right)^{2-4x}}{2\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln2} + \frac{5^{-5x}}{\ln3} + C$

8. Образующая конуса равна 6 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$9\pi$$
 2) 32π 3) 18π 4) 27π

9. Найдите сумму целых решений системы неравенств: $\begin{cases} \cos\pi \cdot x^2 + 2x + 3 \geqslant 0, \\ x - 2 < 0 \end{cases}$

1) 6 2) 0 3) 2 4)
$$-\epsilon$$

10. Решите уравнение: $\cos 5x + \cos 3x = 0$

1)
$$\frac{\pi}{8} + \frac{\pi}{4}n; \frac{\pi}{2} + \pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$$
 2) $\frac{\pi}{8} + 2\pi n; \pi + 2\pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$ 3) $\frac{\pi}{3} + 2\pi n; \pi + 2\pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$ 4) $\pm \frac{\pi}{8} + 2\pi n; \frac{\pi}{2} + 2\pi k; n \in \mathbb{Z}; k \in \mathbb{Z}.$

11. Найдите первообразную функции $f(x) = (2x^5 - 3x^2)$, проходящую через точку (-1; 5).

1)
$$\frac{x^6}{3} - x^3 - \frac{11}{3}$$
 2) $\frac{x^6}{3} + x^3$ 3) $\frac{x^6}{3} - x^3 + \frac{11}{3}$ 4) $\frac{x^3}{3} - x^2 + \frac{11}{3}$

12. Решите неравенство: $|x+5| \le 7$.

1)
$$(-\infty; 1] \cup [2; +\infty]$$

2)
$$[-12; -2]$$

1)
$$(-\infty; 1] \cup [2; +\infty)$$
 2) $[-12; -2]$ 3) $[-12; 2]$ 4) $(-\infty; -12] \cup [2; +\infty)$

13. Найдите площадь треугольника со сторонами 9, 40, 41.

14. Вычислите $\int_{-\sqrt[3]{x}}^{2} \frac{5x-2}{\sqrt[3]{x}} dx$.

1)
$$3 \cdot 2^{\frac{2}{3}}$$

2)
$$3 \cdot 2^{\frac{2}{3}}$$

1)
$$3 \cdot 2^{\frac{2}{3}}$$
 2) $3 \cdot 2^{\frac{2}{3}}$ 3) $3 \cdot 2^{\frac{1}{2}}$ 4) $3 \cdot 2^{\frac{4}{3}}$

15. Найдите объём куба, если площадь его полной поверхности равна 72 см².

1)
$$216 \text{ cm}^3$$

1) 216 cm³. 2)
$$24\sqrt{3}$$
 cm³

3)
$$126 \text{ cm}^3$$

4)
$$16\sqrt{3}$$
 cm

16. Решите уравнение $(0,25)^{2-x} = \frac{128}{2^{x+2}}$

17. Решите систему уравнений: $\left\{ \left(\frac{1}{3} \right)^{3x} \cdot \left(\frac{1}{3} \right)^{-y} = \frac{1}{9}, \\ \log_5 10x - \log_5 y = 1. \right.$

18. Найдите площадь фигуры, ограниченной двумя прямыми: y = 2x + 4, y = 3x - 5, $0 \le x \le 9$.

19. В трапеции углы при основании равны 18° и 104° . Найти наибольший угол трапеции.

20. Вычислите сумму бесконечно убывающей геометрической прогрессии: 0,6; 0,06; 0,006,...

1)
$$\frac{3}{2}$$
 2) $\frac{1}{9}$ 3) $\frac{8}{9}$ 4) $\frac{2}{3}$

2)
$$\frac{1}{9}$$

3)
$$\frac{8}{9}$$

4)
$$\frac{2}{3}$$

21. Упростите выражение: $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{MC} + \overrightarrow{MD} - \overrightarrow{KD}$.

1)
$$\overrightarrow{AL}$$

1)
$$\overrightarrow{AD}$$
 2) \overrightarrow{BC} 3) \overrightarrow{AK} 4) \overrightarrow{MA}

3)
$$\overrightarrow{AK}$$

4)
$$\overrightarrow{MA}$$

22. Упростите выражение $\left(\frac{3a^2}{2b}\right)^3 \cdot \left(\frac{2b^2}{3a^3}\right)^2$.

1)
$$\frac{a}{3}$$

2)
$$\frac{b}{2}$$

3)
$$\frac{3}{7}$$

1)
$$\frac{a}{3}$$
 2) $\frac{b}{2}$ 3) $\frac{3b}{2}$ 4) $\frac{3a}{2}$

23. Решите уравнение $\log_{\frac{1}{\sqrt{x+2}}} 5 + 2 = 0$, в ответе запишите произведение корней или корень, если он единственный.

24. Найдите наибольшее целое решение неравенства $3^{x+17} \cdot 5^{-x-16} > 1,08$.

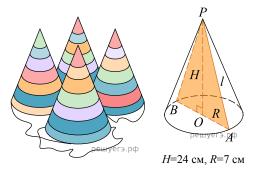
$$1) - 15$$

$$2) -14$$

25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = x^2 - x + 2$, $x_0 = -1$.

1)
$$v = 1$$

2)
$$-3x-1$$


3)
$$3x + 1$$

1)
$$x-1$$
 2) $-3x-1$ 3) $3x+1$ 4) $-3x+1$

Алия и Арман решили облагородить свою дачу. Длина всего участка 27 м, а его площадь 405 м2. Высота дачного домика без крыши равна 2,5 м, ширина в 2 раза больше высоты, а длина основания дачного домика на 11 м больше его ширины. Вокруг домика заасфальтировали дорожку.

26. Найдите периметр основания дачного домика.

Айша изготовила конусообразный головной убор — колпак (см. рис.).

27. Найдите площадь боковой поверхности конуса, $\pi \approx 3$.

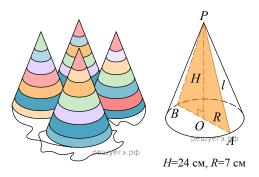
1) 525 cm^2

2) 500 cm^2

 $3)540 \text{ cm}^2$

4) 532 cm^2

Алия и Арман решили облагородить свою дачу. Длина всего участка 27 м, а его площадь 405 м2. Высота дачного домика без крыши равна 2,5 м, ширина в 2 раза больше высоты, а длина основания дачного домика на 11 м больше его ширины. Вокруг домика заасфальтировали дорожку.


28. Найдите объем дачного домика (без учета крыши дома).

1) 105 m^3

2) 100 m^3 3) 400 m^3

4) 200 m^3

Айша изготовила конусообразный головной убор — колпак (см. рис.).

29. Сколько нужно ленты, чтобы обвить края колпака, если $\pi \approx 3$?

1) 42 см

2) 36 см

3) 46 см

4) 40 см

30. Если стакан и колпак имеют одинаковые объемы, то сколько бы поместилось воды в стакан, если $\pi \approx 3$?

1) 1164 cm^3

2) 1182 cm^3

3) 1170 cm^3

4) 1176 cm^3

31. Квадратичная функция задана уравнением $y = -x^2 + 2x + 3$. Установите соответствие между нулями функции и координатами вершины параболы.

А) Нули функции

1) (1; 4)

 $2) \{-1; 3\}$

3) (-2; -1)

32. Окружность вписана в равнобедренный треугольник, боковая сторона которого равна 5, а основание — 6. Установите соответствие между площадью треугольника, радиусом вписанной окружности и их числовыми значениями.

А) Площадь треугольника

1)3

Б) Радиус вписанной окружности

Б) Координаты вершины параболы

2)6

3) 1,5 4) 12

33. Найдите два натуральных числа х и у, если известно, что разность чисел х и 2у равна 10, а произведение чисел х и у равно 12.

> А) Число х принадлежит промежутку Б) Число у принадлежит промежутку

1) [7; 10)

2) (0; 2]

3) (5; 8)

4) (11; 12]

34. Даны уравнения $\frac{x-4}{x-6} = 2$ и $x^2 - x - 6 = 0$. Установите соответствия:

- A) Каждое число является корнем хотя бы одного из
 1) -2, 3, 8

 уравнений
 2) -2, 8, 1

 Б) Ни одно из чисел не является корнем уравнений
 3) -3, 5, 1

 4) 2, -1, 8
- **35.** Арифметическая прогрессия (a_n) задается формулой n-го члена: $a_n = 2, 6n 7$. Установите соответствие между выражением и его числовым значением.

A)
$$a_7$$
 1) 5,2
Б) $a_4 - a_1$ 2) 11,2
3) 7,8
4) 10,4

- **37.** Найдите значение выражения $\sin 67^{\circ} \sin 53^{\circ} \sin 23^{\circ} \sin 37^{\circ}$.

1)
$$\frac{\sqrt{3}}{2}$$
 2) $\frac{\sqrt{2}}{2}$ 3) 0 4) 1 5) $\frac{1}{2}$ 6)

38. Из предложенных ниже вариантов ответов, найдите общую формулу n-го члена последовательности:

$$\frac{1}{1 \cdot 4}; \qquad \frac{2}{3 \cdot 7}; \qquad \frac{3}{5 \cdot 10}; \qquad \frac{4}{7 \cdot 13}; \qquad \dots$$

$$1) \frac{3n-1}{n \cdot (2n+2)} \qquad 2) \frac{2n-1}{n \cdot (2n+2)} \qquad 3) \frac{n}{6n^2-n-1} \qquad 4) \frac{n}{(2n-1) \cdot (2n+2)} \qquad 5) \frac{n}{n \cdot (2n+1)}$$

$$6) \frac{n}{(2n-1) \cdot (3n+1)}$$

39. Решите систему логарифмических уравнений

$$\begin{cases} 2\log_{25} x + \log_5 y = 1, \\ -6x + y = 1. \end{cases}$$

В ответе укажите значение выражения $x \cdot y$.

1)
$$\frac{25}{5}$$
 2) 5 3) $\sqrt{9}$ 4) 4 5) 1 6) $\frac{5}{6}$

40. Через два противоположных ребра куба проведено сечение, площадь которого равна $196\sqrt{2}$ см². Найдите ребро куба и его диагональ.

1) $13\sqrt{2}$ cm 2) 16 cm 3) 14 cm 4) $7\sqrt{2}$ cm 5) 7 cm 6) $14\sqrt{3}$ cm