При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Сократите дробь: $\frac{\sqrt{70} - \sqrt{30}}{\sqrt{35} - \sqrt{15}}$.

1)
$$\sqrt{7}$$
 2) $\sqrt{5}$ 3) $\sqrt{11}$ 4) $\sqrt{2}$

2. Найдите значение выражения $\frac{16x-25y}{4\sqrt{x}-5\sqrt{y}}-\sqrt{y}$, если $\sqrt{x}+\sqrt{y}=3$.

3. Определите числовое значение выражения $\sin 150^{\circ} \cdot \cos 210^{\circ} \cdot tg \, 135^{\circ}$.

1)
$$-\frac{\sqrt{3}}{4}$$
 2) $-\frac{\sqrt{3}}{2}$ 3) $\frac{1}{2}$ 4) $\frac{\sqrt{3}}{4}$

4. Преобразуйте выражение $9x^2 + 12x + 7$, выделив полый квадрат.

1)
$$(3x+2)^2+3$$
 2) $(3x+1)^2+3$ 3) $(3x+2)^2$ 4) $(3x+2)^2+2$

5. Решить уравнение: $16x^2 - 9 = 0$.

1)
$$4 \text{ u} - 4$$
 2) $3 \text{ u} - 3$ 3) $\frac{3}{4} \text{ u} - \frac{3}{4}$ 4) $\frac{9}{16} \text{ u} - \frac{9}{16}$

6. Решите систему уравнений: $\begin{cases} 5x - 2y = 15, \\ -2x + y = -7. \end{cases}$

$$(3; 0)$$
 $(3; 0)$ $(0; -7,5)$ $(1; 3)$ $(1; -5)$

7. Найдите неопределённый интеграл $\int \frac{x^4 + x^3 + x - 3}{x^2 + 1} dx$.

1)
$$\frac{1}{6}x(2x^2+3x-6)-3 \arctan x+C$$
 2) $\frac{1}{6}x(2x^2+3x-6)-2 \arctan x+C$ 3) $-\frac{1}{6}x(2x^2-3x-6)-2 \arctan x+C$ 4) $\frac{1}{6}x(2x^2+3x-6)+2 \arctan x+C$

8. Образующая конуса равна 4 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$4\pi$$
 2) 16π 3) 6π 4) 12π

9. Найдите целые решения системы неравенств: $\begin{cases} 2(3x+2) > 5(x-1), \\ 7(x+2) < 3(2x+3). \end{cases}$

10. Решите уравнение: $\sin x \cos x = \frac{1}{2}$.

1)
$$\pm \pi + 4\pi k$$
, $k \in \mathbb{Z}$ 2) $\pi + 4\pi k$, $k \in \mathbb{Z}$ 3) $2\pi + 4\pi k \in \mathbb{Z}$ 4) $\frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$

11. Найдите первообразную функции $f(x) = 5x(x^2 + 4)$, проходящую через точку (-2; 3).

1)
$$\frac{5}{4}x^4 + 10x^2 - 57$$
 2) $\frac{5}{4}x^4 + 10x^2$ 3) $\frac{5}{4}x^3 + 10x^2 - 57$ 4) $\frac{5}{4}x^4 + 10x$

12. Выберите уравнение, которое является квадратным уравнением с одной переменной

1)
$$5x + 3x^2 = 8$$
 2) $5x^4 + 3x^2 - 18 = 0$ 3) $1,5x^2 - 8 + 25y^2 = 0$ 4) $2x + 15 = 0$

13. Выразите в радианах величину внутреннего угла правильного треугольника.

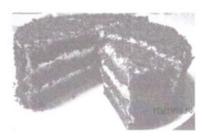
1)
$$\frac{2\pi}{3}$$
 2) $\frac{\pi}{2}$ 3) $\frac{\pi}{6}$ 4) $\frac{\pi}{3}$

14. Вычислите
$$\int_{4}^{5} (3x^2 - 2x)dx$$
.

- 15. Сумма длин всех ребер параллелепипеда $ABCDA_1B_1C_1D_1$ равна 180 см. Определите длину ребер AB, BC и AA_1 , если $AB : BC : AA_1 = 2 : 3 : 4.$
- 1) 15 cm, 20 cm, 25 cm 2) 12 cm, 16 cm, 20 cm 3) 10 cm, 15 cm, 20 cm 4) 16 cm, 20 cm, 24 cm
- **16.** Найдите произведение корней (корень, если он единственный) уравнения $x^2 5x 3 = 4\sqrt{x^2 5x + 9}$.
 - 1) -27 2) -18 3) 12 4) 27
- 17. Решите систему неравенств: $\begin{cases} \log_{\frac{1}{5}} x^2 \geqslant \log_{\frac{1}{5}} 75 \log_5 3, \\ 2(x-3) > 4. \end{cases}$

- 2) [2; 7] 3) $[15; +\infty)$ 4) (5; 15]
- **18.** Найдите площадь фигуры, ограниченной прямой и параболой: $y = -x^2, \ y = x + 2, \ -3 \leqslant x \leqslant 2.$
 - 1) $\frac{115}{12}$ 2) $\frac{119}{6}$ 3) $\frac{115}{6}$ 4) 19
- 19. В трапецию, у которой нижнее основание в два раза больше верхнего и боковая сторона равна 9, вписана окружность. Радиус окружности равен:

- 1) 3 2) $\sqrt{7}$ 3) $2\sqrt{3}$ 4) $3\sqrt{2}$
- **20.** Между числами A = 6 и $B = \frac{1}{2}$ вставьте положительное число C так, чтобы получилось три последовательных члена A, C и B геометрической прогрессии. Число C равно
 - 1) $\frac{1}{3}$ 2) $\sqrt{3}$ 3) $\frac{\sqrt{3}}{2}$ 4) 3
 - **21.** Найдите координаты вектора \overrightarrow{AB} , если известно, что A(2; -3; -10); C(-5; 2; 3), B середина отрезка AC.


- 1) $\left(\frac{7}{2}; \frac{5}{2}; -\frac{13}{2}\right)$ 2) $\left(-\frac{7}{2}; \frac{5}{2}; \frac{13}{2}\right)$ 3) $\left(-\frac{7}{4}; \frac{5}{4}; \frac{13}{2}\right)$ 4) $\left(-\frac{7}{2}; -\frac{5}{2}; \frac{13}{4}\right)$
- **22.** Упростите: $\frac{(3a^2b^3)^2}{18ab^6}$.
- 1) $0.6a^2$ 2) $\frac{1}{2}a^2$ 3) $\frac{1}{2}a^4$ 4) $0.5a^3$

- **23.** Найдите произведение корней уравнения $\log_2(x-1)^2 = \log_2(3x+7)$.
 - 1) -6 2) 6 3) -1 4) 1

- **24.** Решите неравенство $3^x < 27 \cdot 3^{-x}$.
- 1) $\left(-\infty; \frac{2}{3}\right)$ 2) $\left(-\infty; \frac{3}{2}\right)$ 3) $\left(\frac{2}{3}; +\infty\right)$ 4) $(-\infty; 3)$
- **25.** Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = \frac{3}{1 4x}$, $x_0 = 1$.

- 1) $y = \frac{5x}{3} \frac{7}{3}$ 2) $y = \frac{4x}{3} \frac{7}{3}$ 3) $y = \frac{4x}{3} + 2$ 4) $y = -\frac{4x}{3} \frac{7}{3}$

Торт в форме цилиндра. Высота торта 20 см. Диаметр 30 см. Средняя плотность торта 0,4 г/см³.

26. Чтобы разрезать торт провели пять диаметров и получили?

1) 12 кусочков

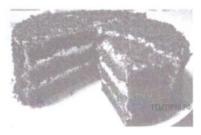
2) 6 кусочков

3) 10 кусочков

4) 9 кусочков

Чайный двор

Посуда является товаром народного потребления и оценивается не только как предмет быта, но и как элемент декора. Спрос на нее всегда остается на достаточно высоком уровне по ряду причин. На сегодняшний день рынок представлен многообразием товаров различных видов посуды и ценовых категорий, что позволяет удовлетворить любой спрос.


В магазине «Чайный двор» выставлены на продажу различный ассортимент чайной посуды начиная от ложки для чая, заканчивая посудой для чайных церемоний из различных металлов и материалов. По акции продавались 5 чашек, 8 блюдцев, 7 ложек. Мадина купила домой комплект посуды по акции.

27. Сколькими способами Мадина может выбрать в магазине комплект «чашка+блюдце»?

1) 100

2) 36

Торт в форме цилиндра. Высота торта 20 см. Диаметр 30 см. Средняя плотность торта 0,4 г/см³.

28. Для упаковки тортов фабрика изготавливает коробки в виде прямоугольного параллелепипеда. Для данного торта нужно изготовить коробку объём которой равен?

1) $1.8 \cdot 10^4 \text{ cm}^3$ 2) $1.6 \cdot 10^4 \text{ cm}^3$ 3) $1.8 \cdot 10^3 \text{ cm}^3$ 4) $9 \cdot 10^4 \text{ cm}^3$

Чайный двор

Посуда является товаром народного потребления и оценивается не только как предмет быта, но и как элемент декора. Спрос на нее всегда остается на достаточно высоком уровне по ряду причин. На сегодняшний день рынок представлен многообразием товаров различных видов посуды и ценовых категорий, что позволяет удовлетворить любой спрос.

В магазине «Чайный двор» выставлены на продажу различный ассортимент чайной посуды начиная от ложки для чая, заканчивая посудой для чайных церемоний из различных металлов и материалов. По акции продавались 5 чашек, 8 блюдцев, 7 ложек. Мадина купила домой комплект посуды по акции.

29. Сколькими способами Мадина может купить в магазине комплект «2 чашки+блююце+3 ложки»?

1) 3200

2) 3100

3) 2800

4) 3000

30. Мадина купила комплект из 5 чашек: 3 из них серебряные, 2 простые; 8 блюдцев: 5 серебряных, 3 простых; 7 ложек: 5 серебряных, 2 простых. Сколькими способами Мадина может выбрать комплект предметов, состоящих из двух серебряных чашек, трех серебряных блюдцев и одной простой ложки.

2) 90

3)80

4) 60

31. Функция задана уравнением $y = -4^{x-1} + 4$. Установите соответствия:

А) Нуль функции

Б) Множество значений функции

	Вариант № 20973
32. Сечение шара, удалённое на 1 от центра, имеет площадь 8π . Установите соответствие между радиусом шара, его объемом и их числовыми значениями.	
А) Радиус шара	$1) 27\pi$
Б) Объем шара	2) 3
•	3) 2
	4) 36π
33. Представьте в виде многочлена выражение $(x-1)^3(2x+4)$. мой коэффициентов многочлена и числовым промежуткам, которым он	
А) Коэффициент при х	1) (-1: 1)

2) (0; 3) 3) [7; 12) 4) [-4; 0)

34. Даны уравнения $x^2 + 4 = x(2x - 3)$ и $(x^2 + 4x)\sqrt{x - 3} = 0$. Установите соответствия:

Б) Сумма коэффициентов многочлена

- A) Каждое число является корнем хотя бы одного из1)-1, 3, 4уравнений2) 2, 1, 0Б) Ни одно из чисел не является корнем уравнений3) 5, -1, 44) 4, 1, 8
- **35.** Дана геометрическая прогрессия (b_n) , у которой $b_5 = -14$, $b_8 = 112$. Установите соответствие между выражением и его числовым значением.
 - A) *q*B) *b*₁
 2) 5
 3) -1
 4) -0,875
 - **36.** Упростите $\log_7 \log_7 \sqrt{7\sqrt{7\sqrt{7}}}$.

1)
$$\frac{7}{8}$$
 2) $-\frac{8}{7}$ 3) $7\sqrt{7}$ 4) $\log_7\left(\frac{7}{8}\right)$ 5) -78 6) $-\log_7\left(\frac{8}{7}\right)$

37. Значение выражения $12\sin\frac{9\pi}{8}\cos\frac{9\pi}{8}$ равно

1) 0 2)
$$3\sqrt{2}$$
 3) $6\sqrt{2}$ 4) $-6\sqrt{2}$ 5) $-3\sqrt{2}$ 6) $3\sqrt{3}$

38. Три положительных числа, взятые в определенном порядке, образуют арифметическую прогрессию. Если среднее из чисел уменьшить в 3 раза, то в том же порядке получится убывающая геометрическая прогрессия. Найти ее знаменатель.

1)
$$3+\sqrt{8}$$
 2) $\sqrt{2}$ 3) $1+\sqrt{8}$ 4) $3+2\sqrt{2}$ 5) 4 6) $3+\sqrt{2}$

39. Решите систему, содержащую иррациональное уравнение

$$\begin{cases} \sqrt{x+y-1} = 1, \\ \sqrt{x-y+2} = 2y-2. \end{cases}$$

В ответе укажите значение выражения x + y.

1)
$$\frac{3}{2}$$
 2) $\frac{1}{2}$ 3) 4 4) $\left(\frac{1}{2}\right)^{-1}$ 5) 2 6) $\sqrt[4]{16}$

40. SABCD — правильная четырехугольная пирамида, сторона основания которой 10, а боковое ребро равно $2\sqrt{22}$. Найдите периметр сечения плоскостью, проходящей через точки B и D параллельно ребру AS.

1) $2\sqrt{22}$ 2) $18\sqrt{2}$ 3) $24\sqrt{2}$ 4) 24 5) $18\sqrt{22}$ 6) $22\sqrt{2}$