При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Вычислите:
$$\left(\left((\sqrt{2})^{\sqrt{2}}\right)^{\sqrt{2}}\right)^{\sqrt{2}}$$
.
$$1) \ 8 \qquad 2) \ 2\sqrt{2} \qquad 3) \ 4 \qquad 4) \ 2$$

2. Упростите выражение $(2-c)^2-c(c+4)$, найдите его значение при c=0,5. В ответ запишите полученное число.

3. Найдите значение выражения $7 \text{ tg } 13^{\circ} \cdot \text{tg } 77^{\circ}$.

4. Разложите квадратный трехчлен $4x^2 + 9x + 2$ на множители.

1)
$$(4x+1)(x+3)$$
 2) $(4x+1)(x+1)$ 3) $(x+1)(x+2)$ 4) $(4x+1)(x+2)$

5. Найдите корни уравнения: |2x-6|=10. |2x-6|=10. |2x-6|=2. |2x-6|=10. |2x-6|=10. |2x-6|=10.

6. Найдите сумму (x+y), где (x;y) — решение системы уравнений $\begin{cases} 3^{x+y} + 81^x = 82, \\ 3y^2 - x = 2. \end{cases}$ причем y < 0.

7. Найдите неопределённый интеграл $\int \left(\frac{1}{x^3} - \frac{3}{x} - \frac{2}{x^2}\right) dx$.

1)
$$\frac{4x-1}{2x^2} + 3\ln x + C$$
 2) $\frac{4x-1}{2x^2} - 3\ln x + C$ 3) $\frac{4x+1}{2x^2} - 3\ln x + C$ 4) $\frac{4x-3}{2x^2} - 3\ln x + C$

8. Бокал имеет форму конуса. В него налита вода на высоту, равную 4. Если в бокал долить воды объемом, равным одной четвертой объема налитой воды, то вода окажется на высоте, равной:

1)
$$\sqrt[3]{100}$$
 2) $2\sqrt[3]{10}$ 3) $2\sqrt[3]{2}$ 4) $2\sqrt[3]{15}$

9. Найдите наименьшее целое решение системы неравенств: $\begin{cases} 5 - \frac{2}{x+3} \geqslant 0, \\ \frac{4x-7}{2x+3} < 2 \end{cases}$

1)-2

4) 2

3) 1

10. Решите уравнение $\cos(3x) = \frac{1}{2}$.

1)
$$\pm \frac{\pi}{9} + \frac{2}{3}\pi k$$
, $k \in \mathbb{Z}$ 2) $(-1)^k \pi + 3\pi k$, $k \in \mathbb{Z}$ 3) $\pm \pi + 6\pi k$, $k \in \mathbb{Z}$ 4) $(-1)^k \frac{\pi}{9} + \frac{1}{3}\pi k$, $k \in \mathbb{Z}$

11. Найдите производную функции $f(x) = -3\ln(x+1)$.

1) -3 2) -3x 3) -3
$$\ln(x+1)$$
 4) $\frac{-3}{x+1}$

12. Решите неравенство: $\frac{7}{2x-3} < 0$.

1)
$$\left(-\frac{3}{2}; +\infty\right)$$
 2) $\left(-\infty; \frac{3}{2}\right)$ 3) $\left(-\infty; -\frac{3}{2}\right]$ 4) $\left(-\infty; -1\right)$

13. Точки A(1; 1), B(3; 5) и C(7; 3) соответственно вершины треугольника ABC. Длина медианы BM равна

1)
$$\sqrt{10}$$
 2) $\sqrt{8}$ 3) 3 4) 4

14. Вычислите $\int_{4}^{5} (3x^2 - 2x) dx$.

15. Найдите объем правильной треугольной усеченной пирамиды, высота которой 6 м и стороны оснований 3 м и 4 м.

1)
$$\frac{19\sqrt{3}}{2}$$
 $^{\text{M}^3}$ 2) $\frac{39\sqrt{3}}{2}$ $^{\text{M}^3}$ 3) $27\sqrt{3}$ $^{\text{M}^3}$ 4) $\frac{37\sqrt{3}}{2}$ $^{\text{M}^3}$

16. Решите уравнение $\sqrt{x+1} = \sqrt{9-8x} - \sqrt{x+4}$.

17. Решите систему уравнений: $\begin{cases} \log_3(2x+y^2) = 1, \\ 2^{x+y^2} - 4 = 0 \end{cases}$

18. Найдите площадь фигуры, ограниченной двумя прямыми: $y = 2x, \ y = x, \ 0 \leqslant x \leqslant 3$.

19. Внешний угол правильного двадцатиугольника равен?

20. Геометрическая прогрессия $\{b_n\}$ — возрастающая, $b_2=4,\ b_4=36$. Найдите b_5 .

21. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{CD} , если $\overrightarrow{AB}=(2;\ 3;\ 1);$ $\overrightarrow{CD}=(-2;-3;\ 1).$

1)
$$-10$$
 2) -12 3) 15 4) -11

- **22.** Упростите выражение $\left(\frac{3a^2}{2b}\right)^3 \cdot \left(\frac{2b^2}{3a^3}\right)^2$.

 1) $\frac{a}{3}$ 2) $\frac{b}{2}$ 3) $\frac{3b}{2}$ 4) $\frac{3a}{2}$
- **23.** Решите уравнение: $\log_{\sqrt{3}}(\lg x + 4) = 2$.

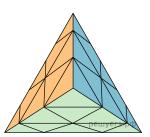
1)
$$\frac{\pi}{4} + \pi k, k \in \mathbb{Z}$$
 2) $\frac{\pi}{3} + \pi k, k \in \mathbb{Z}$ 3) $-\frac{\pi}{3} + \pi k, k \in \mathbb{Z}$ 4) $-\frac{\pi}{4} + \pi k, k \in \mathbb{Z}$

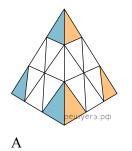
24. Решите неравенство $\log_4(x+2) \ge 0.5$.

1)
$$(-2; +\infty)$$
 2) $(-\infty; 0]$ 3) $\left[\frac{1}{2}; +\infty\right)$ 4) $\left[0; +\infty\right)$

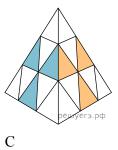
25. Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = x^2 - x + 2$, $x_0 = -1$.

1)
$$x-1$$
 2) $-3x-1$ 3) $3x+1$ 4) $-3x+1$


Семейная пара собирается в поездку на поезде. В составе поезда имеются следующие типы вагонов:

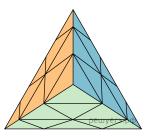

- 1) СВ купе на 2 человека;
- 2) Купе купе на 4 человека;
- 3) Плацкарт А вагон на 36 человек;
- 4) Плацкарт В вагон на 54 человека;
- 5) Общий вагон вагон на 81 человек.
- **26.** Определите, сколькими способами пара сможет разместиться в одном купе *CB*.

В кабинете математики имеется шкаф с тремя полками для моделей объемных разноцветных фигур — пирамид, шара, параллелепипеда, конуса, призмы, тетраэдра, цилиндра общим количеством 14 штук (по две модели каждого вида).


27. Учитель расставил на одной полке шкафа по одной модели фигур каждого вида. Рядом стоящая ученица заметила, что расставить эти фигуры на полке можно в различном порядке. Сколько таких вариантов размещения существует?

Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: А — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

28. Под каким углом синяя грань Пирамидки наклонена к желтой грани?


1) $\arccos \frac{1}{2}$ 2) $\arccos \frac{1}{6}$ 3) $\arccos \frac{1}{3}$ 4) $\arccos \frac{2}{3}$

Семейная пара собирается в поездку на поезде. В составе поезда имеются следующие типы вагонов:

- 1) СВ купе на 2 человека;
- 2) Купе купе на 4 человека;
- 3) Плацкарт А вагон на 36 человек; 4) Плацкарт В вагон на 54 человека;
- 5) Общий вагон вагон на 81 человек.
- **29.** Определите, сколькими способами пара сможет разместиться в вагоне типа Плацкарт A.

3) 890

Пирамидка — это вторая по популярности механическая головоломка в мире. Она имеет вид тетраэдра, у которого грани разделены на 9 равносторонних треугольников со стороной 3 см. Все грани Пирамидки разного цвета. Мефферт изобрел Пирамидку в 1971 г — почти на 10 лет раньше, чем Эрно Рубик придумал свой знаменитый кубик. Но только после успеха кубика Рубика Мефферт решил запатентовать свое изобретение. Элементы пирамидки Мефферта: A — «уголки» (имеют 3 цветные грани), В — «ребра» (имеют 2 цветные грани), С — «радиаторы» (имеют 1 цветную грань).

C

30. Изготовитель выбрал упаковку для Пирамидки в виде сферы. Каким должен быть диаметр упаковки?

1)
$$\frac{3\sqrt{6}}{2}$$
 cm 2) $\frac{2\sqrt{6}}{3}$ cm 3) $\frac{5\sqrt{6}}{2}$ cm 4) $\frac{9\sqrt{6}}{2}$ cm

В

$$3) \frac{5\sqrt{6}}{2} c_{\text{M}}$$

4)
$$\frac{9\sqrt{6}}{2}$$
 cm

- **31.** Функция задана уравнением $y = 3\sin x + 3$. Установите соответствия:
 - А) Нули функции
 - Б) Область допустимых значений функции

1)
$$[-2; 4]$$

2) $\left\{ \frac{3\pi}{2} + 2\pi k : k \in \mathbb{Z} \right\}$

4)
$$\left\{ \frac{3\pi}{2} + \pi k : k \in \mathbb{Z} \right\}$$

- 32. Куб, объем которого равен 8, вписан в шар. Установите соответствие между радиусом шара, площадью его поверхности и числовыми промежутками, которым принадлежат их значения.
 - А) Радиус шара Б) Площадь поверхности шара

33. Представьте в виде многочлена выражение $(2x-3)^3$. Установите соответствия между коэффициентом при x^2 , суммой коэффициентов многочлена и числовым промежуткам, которым они принадлежат.

A) Коэффициент при
$$x^2$$
 Б) Сумма коэффициентов многочлена

34. Даны уравнения
$$3^{x^2} = 27 \cdot 9^x$$
 и $\frac{x^2 - 7x + 10}{x - 5} = 0$. Установите соответствия:

- А) Каждое число является корнем хотя бы одного из уравнений
- Б) Ни одно из чисел не является корнем уравнений

- 1) 3, 1, 7
- 2) 2, 5, 0
- 3) 0, 1, 4
- **35.** Геометрическая прогрессия задается формулой $b_n = 164 \cdot \left(\frac{1}{2}\right)^n$. Установите соответствие между выражением и его числовым значением.
 - Б) S_4

- 1)41
- 2) 71 3) 82
- 4) 153,75

2

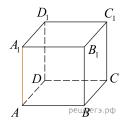
- **36.** Вычислите значение выражения: $\frac{|-2,5+4,6|}{-1,6+|2\cdot 3,5-|-4||}.$
 - 1) 1,7 2) 1,5 3) $\frac{2}{7}$ 4) $\frac{1}{3}$ 5) 1,5 6) $1\frac{1}{2}$
- **37.** Найдите значение выражения $2\sqrt{2}\cos\frac{\pi}{6}$ tg $\frac{2\pi}{3}$.
- 1) $-\sqrt{6}$ 2) $-\sqrt{2}$ 3) $3\sqrt{2}$ 4) $-3\sqrt{2}$ 5) $\sqrt{6}$ 6) $\sqrt{2}$
- 38. Сумма цифр четырехзначного числа равна 16 и все цифры числа образуют арифметическую прогрессию. Причем, цифра единиц на 4 больше цифры сотен. Выберите верные утверждения.
 - 1) последняя цифра четная
- 2) первые две цифры в сумме больше последней
- 3) вторая и последняя цифры в сумме дают 10
 - 4) первая цифра нечетная
- 5) число из последних двух цифр меньше 50
- 6) произведение всех цифр меньше 105
- 39. Решите систему, содержащую однородное уравнение

$$\begin{cases} 3x + 5y = 2, \\ 3x^2 + 10xy - 25y^2 = 0. \end{cases}$$

В ответе укажите значение выражения $x_1y_1 + x_2y_2$.

1)
$$-\frac{17}{120}$$

2)
$$\frac{11}{60}$$


3)
$$-\frac{8}{60}$$

4)
$$\frac{17}{60}$$

5)
$$-\frac{37}{60}$$

1)
$$-\frac{17}{120}$$
 2) $\frac{11}{60}$ 3) $-\frac{8}{60}$ 4) $\frac{17}{60}$ 5) $-\frac{37}{60}$ 6) $-\frac{16}{120}$

40. Найдите площадь боковой поверхности цилиндра, получившегося вращением куба со стороной равной 2 см вокруг прямой AA_1 .

- 1) $8\sqrt{2}$ cm² 2) $\pi\sqrt{2}$ cm² 3) $4\pi\sqrt{2}$ cm² 4) $2\pi\sqrt{2}$ cm² 5) $8\pi\sqrt{3}$ cm²