При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Представьте бесконечную десятичную периодическую дробь 0,(03) в виде обыкновенной дроби.

1)
$$\frac{1}{12}$$
 2) $\frac{4}{29}$ 3) $\frac{2}{27}$ 4) $\frac{1}{33}$

2. Упростите выражение $\frac{a^{-11} \cdot a^4}{a^{-3}}$ и найдите его значение при $a=-\frac{1}{2}.$ В ответе запишите полученное число.

3. Найдите значение выражения: $12 \sin 150^{\circ} \cdot \cos 120^{\circ}$.

4. Преобразуйте выражение $4x^2 - 4x + 2$, выделив полный квадрат.

1)
$$(x-1)^2-1$$
 2) $(2x-1)^2-1$ 3) $(2x+1)^2+1$ 4) $(2x-1)^2+1$

5. Решите уравнение: 2(x+3) = 1 - 3x.

1) 6 2) 5 3) 0 4)
$$-1$$

- 6. Решите систему уравнений $\begin{cases} 3x 2y = 4, \\ 5x + 2y = 20 \end{cases}$ 1) (-3; -2, 5) 2) (2,5; 3) 3) (3; 2, 5) 4) (3; -2, 5)
- 7. Найдите неопределённый интеграл $\int \left(\left(\frac{3}{5} \right)^{4x-2} 2^{3x-4} 5^{1-5x} \right) dx.$ $1) \frac{\left(\frac{5}{3} \right)^{2-4x}}{4 \ln \frac{5}{3}} \frac{2^{3x-4}}{3 \ln 2} + \frac{5^{-5x}}{\ln 5} + C \qquad 2) \frac{\left(\frac{5}{3} \right)^{2-4x}}{4 \ln \frac{5}{3}} \frac{2^{3x-4}}{\ln 2} + \frac{5^{-5x}}{\ln 5} + C \qquad 3) \frac{\left(\frac{5}{3} \right)^{2-4x}}{4 \ln \frac{5}{3}} + \frac{2^{3x-4}}{3 \ln 2} + \frac{5^{-5x}}{\ln 5} + C$

$$\frac{\frac{\sqrt{37}}{4\ln\frac{5}{3}} - \frac{1}{3\ln 2} + \frac{1}{\ln 5} + C}{4\ln\frac{5}{3}} - \frac{2}{\ln 2} + \frac{1}{\ln 5} + C} = \frac{3}{4\ln\frac{5}{3}} + \frac{1}{3\ln 2}}{4\ln\frac{5}{3}} + \frac{1}{3\ln 2} + \frac{1}{3\ln 3} + C}$$

$$4) \frac{\left(\frac{5}{3}\right)^{2-4x}}{2\ln\frac{5}{3}} + \frac{2^{3x-4}}{3\ln 2} + \frac{5^{-5x}}{\ln 3} + C$$

8. Секущая плоскость пересекает сферу по окружности, радиус которой равен 2. Если расстояние от центра сферы до секущей плоскости равно 4, то площадь сферы равна:

1)
$$40\pi$$
 2) 20π 3) 160π 4) 80π

9. Найдите решение системы неравенств: $\begin{cases} \frac{4}{x} - \frac{x}{4} \ge 0, \\ \frac{3 - 2x}{x - 2} > 1. \end{cases}$

1) (2; 4) 2) [1; 2] 3)
$$\left[1\frac{2}{3}; 2\right]$$
 4) $\left(1\frac{2}{3}; 2\right)$

10. Решите уравнение: $\arcsin x = \cos \frac{\pi}{3}$

1)
$$\frac{2\pi}{3}$$
 2) $\frac{\pi}{2}$ 3) $\sin \frac{1}{2}$ 4) $\frac{\pi}{6}$

11. Найдите первообразную функции $f(x) = e^{7x+6} + 6e^{7x+4}$, проходящую через точку (0; 3).

1)
$$\frac{e^{7x+6}}{7} + \frac{6}{7}e^{7x+4} - \frac{6}{7}e^4 - \frac{e^6}{7}$$
 2) $\frac{e^{7x+6}}{7} + e^{7x+4} + 3 - \frac{6}{7}e^4 - \frac{e^6}{7}$ 3) $\frac{e^{7x+6}}{7} + \frac{6}{7}e^{7x+4} + 3 - \frac{6}{7}e^4 - \frac{e^6}{7}$ 4) $\frac{e^{7x+6}}{7} - e^{7x+4} - e^4 - \frac{e^6}{7}$

12. Решите неравенство: $x^3 - 5x^2 + 4x \ge 0$.

1)
$$[0;1] \cup (4;+\infty)$$

1)
$$[0; 1] \cup (4; +\infty)$$
 2) $(-\infty; 0] \cup [1; 4]$ 3) $[0; 1] \cup [4; +\infty)$ 4) $(0; 1) \cup (4; +\infty)$

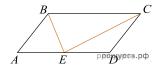
3)
$$[0;1] \cup [4;+\infty]$$

4)
$$(0:1) \cup (4:+\infty)$$

- 13. Средняя линия MN, параллельная стороне AC, равна половине стороны AB. Найдите угол ABC, если угол BMN равен 70° .
 - 1) 35°
- 2) 70°
- 3) 110°
- 4) 55°

- **14.** Вычислите $\int_{0}^{3} \sqrt{x} \left(3 + \frac{8}{x} \right) dx.$

- 1) $26\sqrt{5} 12$ 2) $26\sqrt{5} 18$ 3) $27\sqrt{5} 18$ 4) $24\sqrt{5} 16$
- 15. Из точки, не принадлежащей плоскости, проведены две наклонные, которые образуют с плоскостью углы равные 30° и 60°. Сумма длин проекций этих наклонных на плоскость равна 8. Определите длину меньшей наклонной.
- 2) 4
- **16.** Найдите произведение корней уравнения $4^{x^2} + 128 = 3^{1-x^2} \cdot 12^{x^2}$.


1)
$$-4$$
 2) -3 3) $-\sqrt{3}$

3)
$$-\sqrt{3}$$

- **17.** Решите систему неравенств: $\begin{cases} 3^{2x-1} + 3^{2x-2} > 4, \\ 3x 10 \le 2. \end{cases}$

- **18.** Найдите площадь фигуры, ограниченной прямыми y = 5x 7, y = -3x + 6, x = -1, x = 2.
 - 1) 29
- 2) 28,125

- 19. Точка пересечения биссектрис двух углов параллелограмма, при-лежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.

- 1) 10 2) 5
- 3) 12
- 4)20
- 20. Сумма первых трех членов арифметической прогрессии равна 27, а сумма последних трех членов данной прогрессии равна 45. Сколько членов в заданной арифметической прогрессии, если ее первый член равен 7?
- 2) 4
- 21. На прямой последовательно расположены на равном расстоянии точки С, D, E, F и К. Найдите координаты точки К, если D(-8;3) и E(1;5).

- 1) (11; 5) 2) (14; 8) 3) (19; 1) 4) (19; 9)
- **22.** Упростите выражение $(-3a^6b^2)^3$.
 - 1) $-9a^{18}b^5$ 2) $-27a^9b^6$ 3) $-27a^{18}b^6$ 4) $27a^{18}b^6$

- **23.** Решите уравнение: $9^{\log_9(4x-4)} = x^2 1$.
- 2) 1
- **24.** Решите простейшее тригонометрическое неравенство $\operatorname{ctg} x > \frac{\sqrt{3}}{3}$.

- 1) $\left(\pi k; \frac{\pi}{3} + \pi k\right), k \in \mathbb{Z}$ 2) $\left(2\pi k; \frac{\pi}{4} + \pi k\right), k \in \mathbb{Z}$ 3) $\left(\pi k; \frac{\pi}{3} + 2\pi k\right), k \in \mathbb{Z}$ 4) $\left(2\pi k; \frac{\pi}{3} + \pi k\right), k \in \mathbb{Z}$
- **25.** Найти уравнение касательной к графику функции y = f(x) в точке с абсциссой x_0 , если $f(x) = \frac{1}{r^2 + 2r}$, $x_0 = 1$.

- 1) $y = -\frac{x}{3} + \frac{2}{3}$ 2) $y = \frac{4x}{9} + \frac{7}{9}$ 3) $y = -\frac{2x}{9} + \frac{7}{9}$ 4) $y = -\frac{4x}{9} + \frac{7}{9}$

Перед отъездом в Японию, Самат приобрел для хранения важных документов и ценных вещей кодовый сейф с шестизначным кодом, состоящим из цифр 1, 2, 3 и букв M, N, K.

- 26. Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр и букв?
 - 1) 120
- 2) 36
- 3) 720
- 4) 5040
- 27. Сколько шестизначных кодов для открывания сейфа можно составить из данных цифр так, чтобы буква M была первой?

1).	5040	2) 36	3) 720	4) 120	0		
28. Сколько вариантов возможны при услов	вии, что і	цифра 1 не	должна быт	ть перво	й?		
1)	120	2) 400	3) 240	4) 60	0		
29. Сколько вариантов возможны при услов						есте, ни на шесто	м месте?
1)	480	2) 720	3) 120	4) 320	0		
30. Сколько шестизначных кодов для откры		-		-		ны стоять рядом?	
,	720	2) 320	3) 120	4) 24	0		
31. Функция задана уравнением $y = 5^x - 5$. Устано	вите соотв	етствия:				
А) Нуль функцииБ) Множество значений функци	ги					$(-5; +\infty;)$	
2)					2) (3) 1	$(0; +\infty;)$	
					4) 0		
32. Шар вписан в конус, длина образующей	і́ котороі	го равна 25	, а площадь	полной	і поверхно	ости равна 224π. У	Установите соответ-
ствие между высотой конуса, радиусом шара и ч	исловым	ии промежу	тками, кото	рым пр	инадлежа	т их значения.	
А) Высота конуса						(10; 14)	
Б) Радиус шара) [15; 19)	
) (21; 26]) [5; 7]	
					7.	<i>)</i> [3, 7]	
33. Найдите два натуральных числа a и b , ϵ этих чисел к их разности равно 10.	если изве	естно, что	отношение	чисел а	и <i>b</i> равно	2, а отношение с	уммы их квадратов
А) Число а принадлежит промежу	/тку				1	1) (6; 10)	
Б) Число b принадлежит промежу	тку					2) (3; 5)	
						3) (1; 2]	
					4	4) (0; 1)	
34. Даны уравнения $2^{x-2} = 64$ и $(x-1)$	$\sqrt{x^2-2x^2}$	-3 = 0. Ye	становите со	ответст	гвия:		
А) Каждое число является корнем хотя б	бы одног	о из) 2, 0, 5	
уравнений) 8, -1, 3	
Б) Ни одно из чисел не является корнем ура	авнении) -2, 3, 2) 8, 3, 6	
					7	7 0, 3, 0	
35. Дана геометрическая прогрессия (b_n) , за	наменате	ель которої	і равен 2 и	$b_1 = -$	$\frac{3}{4}$. Устано	вите соответстви	е между выражени-
ем и его числовым значением.					4		
A) S ₆					1) -21	
Б) $b_6 - b_3$						2) -54	
						3) -47,25	
					4	4) 2	
36. Расстояние на плане между двумя точка Масштаб плана равен 1 : 1 000 000.	ми 2,3 с	м. Вычислі	ите соответс	твующе	ее расстоя	ние в действители	вности, если
1) 230 км 2) 23 км	3) 2	230 км	4) 0,23 км	5)	23 м	6) 23 000 м	
37. Значение выражения $5\sin^2\frac{13\pi}{12} + 5\cos^2\frac{1}{12}$							
1) 5	2) 0	3) 1	4) -5 5	5) -1	6) 10		
38. Даны три числа, образующие геометричметическую прогрессию, которые в сумме равн							

3 / 4

4) 27; 9; 3

5) 15; 9; 3

6) 37; 18,5; 9,25

предложенных вариантов числа, соответствующие геометрической или арифметической прогрессиям

3) 32; 8; 2

2) 13; 5; 1

39. Решите систему логарифмических уравнений

$$\begin{cases} \lg(x - 2y - 6) = 0, \\ \log_2(x - y) = 1. \end{cases}$$

В ответе укажите значение выражения $\frac{x}{y}$.

1)
$$\frac{3}{5}$$
 2) $\frac{3}{4}$ 3) $\frac{1}{2}$ 4) $-\frac{3}{5}$ 5) $\frac{6}{10}$ 6) $-\frac{3}{4}$

- 40. Шар радиусом 5 см пересечен плоскостью, отстоящей от его центра на 3 см. Найдите радиус и диаметр круга, получившегося в сечении.

 - 1) $\sqrt{2}$ cm 2) $4\sqrt{2}$ cm 3) 8 cm 4) 16 cm 5) 4 cm 6) $8\sqrt{2}$ cm