Реальная версия ЕНТ по математике 2021 года. Вариант 4120

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

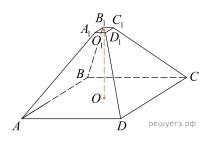
- **1.** Упростите выражение: $(0,2\sqrt{11}+1)(1-0,2\sqrt{11})$.
- **2.** Решить уравнение: $16x^2 9 = 0$.

1)
$$4 \text{ u} - 4$$
 2) $3 \text{ u} - 3$ 3) $\frac{3}{4} \text{ u} - \frac{3}{4}$ 4) $\frac{9}{16} \text{ u} - \frac{9}{16}$ 5) $3 \text{ u} - 3$

- 3. Решите систему уравнений: $\begin{cases} 4x + \frac{9}{y} = 21, \\ 17 3x = \frac{18}{y}. \end{cases}$ $= 1) (14; 5) \qquad 2) (0; 18) \qquad 3) (5; 9) \qquad 4) (-15; -11) \qquad 5) (9; 15)$
- **4.** Токарь, делая по 54 детали в час, изготовил все детали за 5 часов. За сколько часов токарь изготовит все детали, если будет делать по 15 деталей в час?
 - 1) 15 ч 2) 18 ч 3) 9 ч 4) 16 ч 5) 12
 - **5.** Найдите область определения функции $y = \sqrt{\log_{\frac{1}{2}}(x+2)}$.

1)
$$(-2; +\infty)$$
 2) $(-2; 1]$ 3) $(-2; -1]$ 4) $(-\infty; -1)$ 5) $[-1; +\infty)$

- **6.** Решите систему уравнений: $\begin{cases} 3^y \cdot 2^x = 972, \\ y x = 3. \end{cases}$ 1) (3; 1) 2) (4; 3) 3) (2; 5) 4) (2; 4) 5) (3; 4)
- 7. В арифметической прогрессии найдите a_7 , если $a_1 = -\sqrt{2}$ и $d = 1 + \sqrt{2}$.

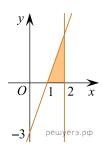

1)
$$3\sqrt{2}+5$$
 2) $5\sqrt{2}+6$ 3) $6\sqrt{2}+5$ 4) $5\sqrt{2}+7$ 5) $7\sqrt{2}+7$

8. Найдите область значений квадратичной функции: $y = -x^2 + 4x - 3$.

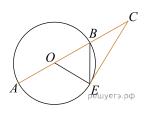
1)
$$\left(-\infty;1\right]$$
 2) $\left(-\infty;1\right)$ 3) $\left(-1;1\right]$ 4) $\left[1;+\infty\right)$ 5) $\left[-1;1\right]$

9. Из круга радиусом 10 вырезали квадрат наибольшего размера. Площадь оставшейся части круга при $\pi=3,14$ равна

10. Найдите объем правильной четырехугольной усеченной пирамиды, если стороны ее основания 1 см и 9 см, а высота 6 см.



- 1) 162 cm^3 2) 182 cm^3 3) 152 cm^3 4) 180 cm^3
- 5) 175 cm^3
- **11.** Числовая последовательность задана условиями $x_{n+1} = x_n 2$, $x_1 = 3$. Какое из указанных чисел равно x_3 ?
 - 1)-3 2)1 3)-2 4)0 5)-1


- **12.** Значение переменной x, при котором верно неравенство: $\frac{1}{5} < x < \frac{1}{2}$.

1)
$$\frac{1}{4}$$
 2) $\frac{1}{10}$ 3) $\frac{9}{10}$ 4) $\frac{4}{5}$ 5) $\frac{3}{4}$

- **13.** Решите систему неравенств: $\begin{cases} 2\sqrt{x+8} < 4, \\ \sqrt{3-2x} \geqslant 3 \end{cases}$ и укажите количество целых решений системы неравенств.
 - 1) 2 2) 1 3)5 4) 3 5) 4
 - 14. Найдите площадь заштрихованной фигуры:

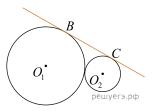
- 1) 4,5 кв. ед.
- 2) 3 кв. ед.
- 3) 1,5 кв. ед.
- 4) 6 кв. ед.
- 5) 9 кв. ед.
- 15. К окружности проведена секущая СА. Треугольник ВОЕ равносторонний, CA = 12. Длина касательной CE равна

- 1) $4\sqrt{2}$ 2) $3\sqrt{5}$ 3) 6 4) 4 5) $4\sqrt{3}$
- 16. Значение частного

$$\frac{a^2+a-6}{2a^2+5a-3}:\frac{3a^2-5a-2}{2a^2+a-1}$$

равно

1)
$$\frac{a+1}{3a+1}$$


2)
$$\frac{3a+1}{a-1}$$

1)
$$\frac{a+1}{3a+1}$$
 2) $\frac{3a+1}{a-1}$ 3) $\frac{3a+1}{a+1}$ 4) $\frac{a-1}{3a+1}$ 5) $\frac{a-1}{3a-1}$

4)
$$\frac{a-1}{3a+1}$$

$$5) \ \frac{a-1}{3a-1}$$

17. На рисунке радиусы касающихся окружностей с центрами O_1 и O_2 равны 7 и 3. К окружностям проведена общая касательная ВС. Расстояние между точками касания равно:

1)
$$\sqrt{87}$$
 2) $6\sqrt{2}$ 3) $5\sqrt{3}$ 4) $2\sqrt{21}$ 5) $3\sqrt{11}$

- **18.** На заводе работают токари и слесари, число которых относится соответственно как $\frac{11}{12}:\frac{1}{2}$. Сколько всего рабочих на заводе, если токарей на 95 больше, чем слесарей?
 - 1) 300 2) 325 4) 303
 - **19.** Решите систему неравенств: $\begin{cases} 5^{x^2-9} \geqslant 625^{2x}, \\ \frac{4x+5}{7} \frac{3x+2}{4} \leqslant \frac{7-2x}{8}. \end{cases}$

1)
$$x \in (-\infty; -1] \cup \left[9\frac{1}{4}; +\infty\right)$$
 2) $x \in (-\infty; 1] \cup [9; +\infty)$ 3) $x \in (-\infty; -1] \cup \left[9; 6\frac{1}{4}\right]$
4) $x \in (-\infty; -1] \cup \left[9; 9\frac{1}{4}\right]$ 5) $x \in (-\infty; -1] \cup [9; +\infty)$

- **20.** Двугранный угол равен 60° . Из точки N на его ребре в гранях проведены перпендикулярные ребру отрезки NB = 8 см, AN = 2 см. Найдите длину AB.
 - 1) $6\sqrt{13}$ cm 2) $2\sqrt{13}$ cm 3) $4\sqrt{13}$ cm 4) $3\sqrt{13}$ cm 5) $5\sqrt{13}$ cm

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0.7 м \times 1.4 м. На швы и обрезки тратится 10 % от площади крыши.

- 21. Чему равна площадь одного кровельного листа?
 - 1) $1.6 \,\mathrm{m}^2$
- 2) 0.98 m^2 3) 0.96 m^2
- 4) 9.8 m^2 5) 98 m^2
- 22. Чему равна площадь поверхности башни?
 - 1) $3\sqrt{11\pi} \, \text{m}^2$
- 2) $12\pi \text{ M}^2$
- 3) $3\sqrt{13}\pi \, \text{m}^2$ 4) $3\sqrt{15}\pi \, \text{m}^2$ 5) $5\sqrt{13}\pi \, \text{m}^2$
- 23. Сколько нужно использовать материала (кровельного железа) для покрытия крыши с учетом швов и обрезок? (округлите до целых). $(\pi = 3, 14)$
 - 1) 52 m^2 2) 45 m^2 3) 37 m^2 4) 25 m^2 5) 31 m^2

- 24. Какое количество листов понадобится для башни?
 - 1) 34
- 2) 30
- 3) 32
- 4) 38 5) 40
- 25. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?
 - 1) в 24 раза
- 2) в 64 раза
- 3) в 13 раз
- 4) в 20 раз
- 5) в 16 раз

- **26.** Найдите значение выражения $\frac{\log_5 \sqrt[5]{14}}{\log_{125} \sqrt{14}}$

- 1) 2^{-1} 2) 1,5 3) -1,5 4) $\frac{5}{6}$ 5) $-\frac{1}{2}$ 6) 1,2 7) $\frac{2}{3}$ 8) 5^{-1}

27. Корнями уравнения
$$\frac{\lg (x^2 - 18x + 100) - 2}{\lg (x^2 + 18x + 100)} = 0$$
 являются?

- **28.** Какому промежутку принадлежит сумма (x+y), где (x;y) решение системы уравнений: $\begin{cases} 5\sqrt{x} + 2\sqrt{y} = 7, \\ 6\sqrt{x} 5\sqrt{y} = 1. \end{cases}$
 - 1) (4; 7) 2) (0; 3) 3) [-1; 1] 4) (2; 3) 5) [3; 5] 6) (2; 7) 7) [-3; 5] 8) [2; 5]
- **29.** Двое рабочих изготовили 60 деталей за время t. Производительность первого составляет $\frac{2}{3}$ производительности второго. Из ниже приведенных ответов укажите производительность второго рабочего, если известно, что t целое число.
 - 1) 16 деталей в час
 2) 22 деталей в час
 3) 10 деталей в час
 4) 15 деталей в час
 5) 20 деталей в час

 6) 18 деталей в час
 7) 12 деталей в час
 8) 9 деталей в час
 - **30.** Укажите интервалы, удовлетворяющие неравенству: $x^2 |x| 6 > 0$.

1)
$$[3; +\infty)$$
 2) $(-\infty; -3]$ 3) $(-\infty; +\infty)$ 4) $(3; +\infty)$ 5) $[-3; 6]$ 6) $(-\infty; -3)$ 7) $(-3; 3)$ 8) $[-6; 3]$

31. Дана система уравнений

$$\begin{cases} 2^{x} \cdot 4^{y} = 32, \\ \log_{3}(x - y) = \log_{3} 2, \end{cases}$$

где (x; y) — решение данной системы. Сумма (x + y) принадлежит промежутку?

1)
$$(5; 12)$$
 2) $(5; 7)$ 3) $(0; 10)$ 4) $(-\infty; 2)$ 5) $(-1; 6)$ 6) $(0; 8)$ 7) $(10; 24)$ 8) $(-8; 4)$

32. Найдите производную функции: $y = \frac{2x+1}{x^2}$.

1)
$$\frac{-(2x+1)}{x^4}$$
 2) $\frac{2(x^2+1)}{x^4}$ 3) $\frac{-2(x+2)}{x^4}$ 4) $\frac{-(2x+1)}{x^4}$ 5) $\frac{-2(x^3)+1}{x^4}$ 6) $\frac{-2x+1}{x^2}$ 7) $\frac{-(2x+1)}{x^3}$ 8) $\frac{-2x(x^2+1)}{x^3}$

33. Найдите стороны треугольника MKP, если $\angle M = 15^\circ$ и $\angle P = 30^\circ$, а высота MH = 4 см.

1)
$$(36+36\sqrt{3})$$
 cm 2) 8 cm 3) $8\sqrt{2}$ cm 4) 12 cm 5) 9 cm 6) 27 cm 7) $(4\sqrt{3}-4)$ cm 8) $4\sqrt{2}$ cm

34. Напишите уравнение общей касательной к параболам: $y = x^2 + 4x + 8$ и $x^2 + 8x + 4$.

1)
$$y-x-2=0$$
 2) $y=-x-2$ 3) $y=8x+4$ 4) $x+y-4=0$ 5) $x+y+2=0$ 6) $y=-x$ 7) $y=-x+4$ 8) $8x-y+4=0$

35. В прямой правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ имеем $B_1D=8\sqrt{3}$ и $\angle B_1DB=45^\circ$. Найдите площадь боковой поверхности и площадь полной поверхности данной призмы.

1)
$$768\sqrt{3}$$
 2) $228\sqrt{3}$ 3) $288\sqrt{3}$ 4) $384\sqrt{6}$ 5) $288\sqrt{2}$ 6) $192\sqrt{3}$ 7) $576\sqrt{6}$ 8) $384\sqrt{2}$