Реальная версия ЕНТ по математике 2021 года. Вариант 4219

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Упростите выражение:
$$\frac{x+y-2\sqrt{xy}}{\sqrt{y}-\sqrt{x}}$$
.

1)
$$(\sqrt{y} + \sqrt{x})^2$$
 2) $(\sqrt{y} - \sqrt{x})^2$ 3) $\sqrt{y} + \sqrt{x}$ 4) $\sqrt{y} - \sqrt{x}$ 5) $\sqrt{x} + \sqrt{y}$

3)
$$\sqrt{y} + \sqrt{x}$$

1)
$$\sqrt{y} - \sqrt{x}$$

5)
$$\sqrt{x} + \sqrt{y}$$

2. Решить уравнение:
$$16x^2 - 9 = 0$$
.

1)
$$4 \text{ u} - 4$$
 2) $3 \text{ u} - 3$ 3) $\frac{3}{4} \text{ u} - \frac{3}{4}$ 4) $\frac{9}{16} \text{ u} - \frac{9}{16}$ 5) $3 \text{ u} - 3$

3)
$$\frac{3}{4}$$
 u $-\frac{3}{4}$

4)
$$\frac{9}{16}$$
 u $-\frac{9}{16}$

3. Найдите значение выражения
$$3x_0 - \frac{1}{3}y_0$$
, где $(x_0; y_0)$ — решение системы уравнений $\begin{cases} x^2 + 2y^2 = 1, \\ x - y^2 = 1. \end{cases}$

4. Расстояние между двумя населенными пунктами мотоциклист проехал за 2,5 часа со скоростью 40 км/ч. Определите, за какое время это же расстояние проедет автомобиль, движущийся со скоростью 60 км/ч.

5. Из данных пар чисел (x, y), выберите ту, которая не удовлетворяет решению неравенства: $4x - 5 \geqslant y$.

$$3)(3;-1$$

6. Решите систему уравнений:
$$\begin{cases} 3^{y} \cdot 2^{x} = 972, \\ y - x = 3. \end{cases}$$

7. Вычислите сумму бесконечно убывающей геометрической прогрессии: 0,6; 0,06; 0,006,...

1)
$$\frac{3}{2}$$
 2) $\frac{1}{9}$ 3) $\frac{8}{9}$ 4) $\frac{2}{3}$ 5) $\frac{4}{9}$

4)
$$\frac{2}{3}$$

8. Найдите производную функции $f(x) = 2 \ln x$.

1)
$$2^{\ln x}$$
 2) $2x \cdot \ln x$ 3) $\frac{2}{x}$ 4) 2^x 5) $2x$

3)
$$\frac{2}{r}$$

9. На оси абсцисс найдите точку, равноудаленную от точек A(-1; 2) и B(-3; 4).

$$4)(3;-2)$$

10. Найдите объем правильной треугольной усеченной пирамиды, высота которой 6 м и стороны оснований 3 м и 4 м.

1)
$$\frac{19\sqrt{3}}{2}$$
 m³

2)
$$\frac{39\sqrt{3}}{2}$$
 m³

3)
$$27\sqrt{3}2 \text{ m}^2$$

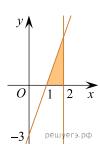
1)
$$\frac{19\sqrt{3}}{2}$$
 m³ 2) $\frac{39\sqrt{3}}{2}$ m³ 3) $27\sqrt{3}2$ m³ 4) $\frac{37\sqrt{3}}{2}$ m³ 5) $\frac{17\sqrt{3}}{2}$ m³

5)
$$\frac{17\sqrt{3}}{2}$$
 M

11. Если сумма с пятого по восьмой член арифметической прогрессии равна 48, а разность прогрессии равна 2, то ее первый член равен

12. Упростите: $\frac{(3a^2b^3)^2}{18ab^6}$.

2)
$$\frac{1}{2}a^2$$


3)
$$\frac{1}{2}a^{2}$$

4)
$$\frac{1}{2}$$

1)
$$0.6a^2$$
 2) $\frac{1}{2}a^2$ 3) $\frac{1}{2}a^4$ 4) $\frac{1}{2}a^5$ 5) $0.5a^3$

13. Решите систему неравенств: $\begin{cases} 3^{2x-1} + 3^{2x-2} > 4, \\ 3x - 10 \leqslant 2. \end{cases}$

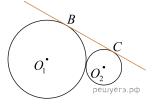
14. Найдите площадь заштрихованной фигуры:

- 1) 4,5 кв. ед.
- 2) 3 кв. ед.
- 3) 1,5 кв. ед.
- 4) 6 кв. ед.
- 5) 9 кв. ед.

15. Сторона ромба равна 12. Косинус одного из его углов равен $\frac{2}{3}$. Площадь ромба равна

- 2) 48
- 3) $24\sqrt{5}$ 4) $12\sqrt{5}$ 5) $48\sqrt{5}$

16. Значение частного


$$\frac{a^2+a-6}{2a^2+5a-3}:\frac{3a^2-5a-2}{2a^2+a-1}$$

равно

1)
$$\frac{a+1}{3a+1}$$

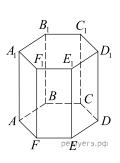
- 1) $\frac{a+1}{3a+1}$ 2) $\frac{3a+1}{a-1}$ 3) $\frac{3a+1}{a+1}$ 4) $\frac{a-1}{3a+1}$ 5) $\frac{a-1}{3a-1}$

17. На рисунке радиусы касающихся окружностей с центрами O_1 и O_2 равны 7 и 3. К окружностям проведена общая касательная ВС. Расстояние между точками касания равно:

- 1) $\sqrt{87}$ 2) $6\sqrt{2}$ 3) $5\sqrt{3}$ 4) $2\sqrt{21}$ 5) $3\sqrt{11}$

18. На заводе работают токари и слесари, число которых относится соответственно как $\frac{11}{12}:\frac{1}{2}$. Сколько всего рабочих на заводе, если токарей на 95 больше, чем слесарей?

- 1) 300 2) 325
- 3) 323
- 4) 303
- 5) 312


19. Решите систему неравенств: $\begin{cases} 5^{x^2-9} \geqslant 625^{2x}, \\ \frac{4x+5}{7} - \frac{3x+2}{4} \leqslant \frac{7-2x}{8}. \end{cases}$

1)
$$x \in (-\infty; -1] \cup \left[9\frac{1}{4}; +\infty\right)$$
 2) $x \in (-\infty; 1] \cup [9; +\infty)$ 3) $x \in (-\infty; -1] \cup \left[9; 6\frac{1}{4}\right]$
4) $x \in (-\infty; -1] \cup \left[9; 9\frac{1}{4}\right]$ 5) $x \in (-\infty; -1] \cup [9; +\infty)$

20. Даны векторы $\vec{a}\{2;-1;3\},\ \vec{b}\{0;2;1\},\ \vec{c}\{-1;0;0\}.$ Найдите скалярное произведение векторов \vec{p} и \vec{q} , если $\vec{p} = 2\vec{a} - \vec{b}$ и $\vec{q} = \vec{a} - 3\vec{c}$.

- 1) 39
- 2) 15
- 3) 27 4) 37
- 5) 42

Учитель дал домашнее практическое задание по геометрии. Сделать макет призмы и составить к ним задания. Самат подготовил макет правильной шестиугольной призмы со стороной основания равной 1, а боковое ребро 2 и составил следующие задания.

21. Найдите сумму векторов $\overrightarrow{AA_1}$ и $\overrightarrow{E_1D_1}$.

1)
$$\overrightarrow{D_1C}$$
 2) $\overrightarrow{AB_1}$ 3) \overrightarrow{BC} 4) $\overrightarrow{AF_1}$ 5) $\overrightarrow{BB_1}$ 22. Определите длину полученного вектора. 1) $\sqrt{5}$ 2) $\sqrt{2}$ 3) $\sqrt{3}$ 4) $\sqrt{6}$ 5) 1

23. Определите вектор, равный сумме векторов $\overrightarrow{AB_1} + \overrightarrow{B_1E_1} + \overrightarrow{F_1F}$.

1)
$$\overrightarrow{AB_1}$$
 2) $\overrightarrow{AF_1}$ 3) $\overrightarrow{BB_1}$ 4) \overrightarrow{AE} 5) \overrightarrow{BC}

24. Определите угол между прямой AD_1 и плоскостью ABCDEF.

1) 30° 2) 90° 3) 60° 4) 180° 5) 45°

25. Определите угол между векторами
$$\overrightarrow{EB}$$
 и \overrightarrow{EA} .

1) 60° 2) 180° 3) 90° 4) 45° 5) 30°

26. Найдите значение выражения $\frac{\log_5 \sqrt[5]{14}}{\log_{125} \sqrt{14}}$.

1)
$$2^{-1}$$
 2) 1,5 3) -1,5 4) $\frac{5}{6}$ 5) $-\frac{1}{2}$ 6) 1,2 7) $\frac{2}{3}$ 8) 5^{-1}

27. Корнями уравнения $\frac{\lg\left(x^2-18x+100\right)-2}{\lg\left(x^2+18x+100\right)}=0$ являются? $1)-10 \quad 2)\ 10 \quad 3)-18 \quad 4)\ 9 \quad 5)\ 18 \quad 6)\ 0 \quad 7)\ 2 \quad 8)\ 1$

28. Какому промежутку принадлежит сумма (x + y), где (x; y) — решение системы уравнений: $\begin{cases} 5\sqrt{x} + 2\sqrt{y} = 7, \\ 6\sqrt{x} - 5\sqrt{y} = 1. \end{cases}$ 1) (4; 7) 2) (0; 3) 3) [-1; 1] 4) (2; 3) 5) [3; 5] 6) (2; 7) 7) [-3; 5] 8) [2; 5]

29. После того, как тракторист вспахал 52% поля, ему осталось вспахать еще 6 га. Сколько всего гектаров поля должен был вспахать тракторист?

1)
$$12\frac{1}{4}$$
 ra 2) 12,75 ra 3) 12,25 ra 4) $12\frac{3}{4}$ ra 5) 12 ra 6) 12,5 ra 7) $12\frac{1}{2}$ ra 8) 10,5 ra

30. Из нижеперечисленных ответов укажите натуральные числа, удовлетворяющие неравенству: $x^2 - |x| - 6 < 0$.

31. Найдите значение выражения
$$\sqrt{x \cdot y}$$
, где $(x; y)$ — решение системы уравнений: $\begin{cases} x - y = 24, \\ \sqrt{x} + \sqrt{y} = 6. \end{cases}$

4) 12

3) 1

 $(\sqrt{x} + \sqrt{y} = 6.$ 1) $\sqrt{25}$ 2) 6 3) 7 4) $\sqrt{49}$ 5) $\sqrt{8^2}$ 6) 5 7) $\sqrt{36}$ 8) $\sqrt{5^2}$

32. Область определения функции: $y = 3 + \sqrt{\sin \frac{x}{4}}$.

1)
$$[\pi n; \pi + \pi n], n \in \mathbb{Z}$$
 2) $[2\pi n; \pi + 2\pi n], n \in \mathbb{Z}$ 3) $[\pi n; \pi + 2\pi n], n \in \mathbb{Z}$ 4) $[8\pi n; 2\pi + 4\pi n], n \in \mathbb{Z}$ 5) $[4\pi n; \pi + 2\pi n], n \in \mathbb{Z}$ 6) $[4\pi n; 4\pi + 8\pi n], n \in \mathbb{Z}$ 7) $[8\pi n; 4\pi + 8\pi n], n \in \mathbb{Z}$ 8) $[8\pi n; 4\pi + 4\pi n], n \in \mathbb{Z}$

33. Найдите периметр и площадь ромба, если его диагонали равны 5 см и 1,2 дм

1)
$$26 \text{ cm}$$
 2) 80 cm^2 3) 36 cm^2 4) 3 cm 5) 16 cm^2 6) 15 cm 7) 30 cm^2 8) 12 cm

34. Вычислите значение производной функции f(x) в данной точке f'(1), если $f(x) = \frac{3^x}{x^2 + 1}$.

1)
$$\frac{5}{\ln 3 - 1}$$
 2) $\frac{3(\ln 3 - 1)}{2}$ 3) $(\ln 3 - 1)$ 4) $\frac{2(\ln 3 - 1)}{3}$ 5) $\frac{(\ln 3 - 1)}{4}$ 6) $1, 5(\ln 3 - 1)$ 7) $\frac{4(\ln 3 - 1)}{6}$ 8) $\frac{2(\ln 3 - 1)}{5}$

35. Стороны основания прямого параллелепипеда равны 6 дм и 8 дм. Известно, что меньшая диагональ параллелепипеда равна 9 дм, а одна из диагоналей основания равна 12 дм. Найдите боковое ребро и большую диагональ прямого параллелепипеда.

1)
$$2\sqrt{14}$$
 дм 2) $3\sqrt{14}$ дм 3) 5 дм 4) 13 дм 5) 6 дм 6) 8 дм 7) 10 дм 8) $\sqrt{14}$ дм