Реальная версия ЕНТ по математике 2021 года. Вариант 4126

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1.
$$\sqrt{(ac)^2}$$
 pasen?

1)
$$-ac$$
 2) a^2c^2 3) $-|ac|$ 4) $|ac|$ 5) ac

2. Решить уравнение: $16x^2 - 9 = 0$.

1)
$$4 \text{ u} - 4$$
 2) $3 \text{ u} - 3$ 3) $\frac{3}{4} \text{ u} - \frac{3}{4}$ 4) $\frac{9}{16} \text{ u} - \frac{9}{16}$ 5) $3 \text{ u} - 3$

3. Решите систему уравнений: $\begin{cases} 5x - 2y = 15, \\ -2x + y = -7. \end{cases}$

4. Токарь, делая по 54 детали в час, изготовил все детали за 5 часов. За сколько часов токарь изготовит все детали, если будет делать по 15 деталей в час?

5. Найдите область определения функции $y = \sqrt{\log_{\frac{1}{2}}(x+2)}$.

1)
$$(-2; +\infty)$$
 2) $(-2; 1]$ 3) $(-2; -1]$ 4) $(-\infty; -1)$ 5) $[-1; +\infty)$

6. Решите систему неравенств: $\begin{cases} \frac{2x-1}{x} < 0, \\ \frac{3x+5}{x-2} \le 0. \end{cases}$

1)
$$(0; 0,5)$$
 2) $[-0,6; 0,5)$ 3) $[0; 0,5]$ 4) $[2; +\infty)$ 5) $(0,5; 2]$

7. Найдите первый член арифметической прогрессии, если сумма двадцати яти первых членов прогрессии равна 250 и d = 3.

1)
$$23.5$$
 2) -24 3) -26 4) -20.5 5) 22.5

8. Найдите область значений квадратичной функции: $y=-x^2+4x-3$. 1) $(-\infty;1]$ 2) $(-\infty;1)$ 3) (-1;1] 4) $[1;+\infty)$ 5) [-1;1]

1)
$$(-\infty;1]$$
 2) $(-\infty;1)$ 3) $(-1;1]$ 4) $[1;+\infty)$ 5) $[-1;1]$

9. Из круга радиусом 10 вырезали квадрат наибольшего размера. Площадь оставшейся части круга при $\pi = 3,14$ равна

10. Найдите диагональ прямоугольной призмы, в основании которой лежит прямоугольник со сторонами 8 см и $4\sqrt{5}$ см и боковое ребро призмы 5 см.

11. Числовая последовательность задана условиями $x_{n+1} = x_n - 2$, $x_1 = 3$. Какое из указанных чисел равно x_3 ?

1)
$$-3$$
 2) 1 3) -2 4) 0 5) -1

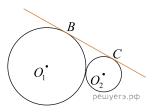
12. Значение переменной x, при котором верно неравенство: $\frac{1}{5} < x < \frac{1}{2}$.

1)
$$\frac{1}{4}$$
 2) $\frac{1}{10}$ 3) $\frac{9}{10}$ 4) $\frac{4}{5}$ 5) $\frac{3}{4}$

13. Решите систему неравенств: $\begin{cases} 2\sqrt{x+8} < 4, \\ \sqrt{3-2x} \geqslant 3 \end{cases}$ и укажите количество целых решений системы неравенств.

14. Вычислите объем фигуры, получаемой вращением вокруг оси Ox дуги кривой $y = \cos x,$ $x \in \left[0; \frac{\pi}{2}\right].$

1)
$$\frac{\pi}{2}$$
 2) π^3 3) $\frac{\pi}{3}$ 4) $\frac{\pi^2}{4}$ 5) $\frac{\pi^2}{6}$


15. Сторона ромба равна 12. Косинус одного из его углов равен $\frac{2}{3}$. Площадь ромба равна

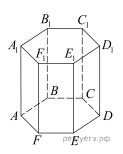
1) 40 2) 48 3)
$$24\sqrt{5}$$
 4) $12\sqrt{5}$ 5) $48\sqrt{5}$

16. Вычислите: $\frac{72^{2k+1}}{6^{6k} \cdot 9^{1-k}}.$

1)
$$2^{6k}$$
 2) 6 3) 6^{3k-1} 4) 8 5) 4

17. На рисунке радиусы касающихся окружностей с центрами O_1 и O_2 равны 7 и 3. К окружностям проведена общая касательная BC. Расстояние между точками касания равно:

1)
$$\sqrt{87}$$
 2) $6\sqrt{2}$ 3) $5\sqrt{3}$ 4) $2\sqrt{21}$ 5) $3\sqrt{11}$


18. Моторная лодка прошла 21 км по течению реки и обратно, затратив 2 ч 40 мин. в другой раз та же моторная лодка прошла по течению реки 18 км и 14 км против течения реки, затратив на весь путь 2 ч. Какова собственная скорость лодки?

19. Решите систему неравенств: $\begin{cases} \frac{x+1}{\log_2(x-1)} > 0, \\ \log_{11}(x^2+7) < \log_{11}(6x-1). \end{cases}$ 1) (2; 4) 2) (2; + ∞) 3) (4; + ∞) 4) (0; 4] 5) [2; 4)

20. Из точки M проведен перпендикуляр MK, равный 6 см к плоскости квадрата ACPK. Наклонная MC образует с плоскостью квадрата угол 60° . Найдите сторону квадрата.

1) 3 cm 2)
$$\sqrt{6}$$
 cm 3) $2\sqrt{6}$ cm 4) 6 cm 5) $2\sqrt{3}$ cm

Учитель дал домашнее практическое задание по геометрии. Сделать макет призмы и составить к ним задания. Самат подготовил макет правильной шестиугольной призмы со стороной основания равной 1, а боковое ребро 2 и составил следующие задания.

21. Найдите сумму векторов $\overrightarrow{AA_1}$ и $\overrightarrow{E_1D_1}$.

1)
$$\overrightarrow{D_1C}$$
 2) $\overrightarrow{AB_1}$ 3) \overrightarrow{BC} 4) $\overrightarrow{AF_1}$ 5) $\overrightarrow{BB_1}$

22. Определите длину полученного вектора.

1)
$$\sqrt{5}$$
 2) $\sqrt{2}$ 3) $\sqrt{3}$ 4) $\sqrt{6}$ 5) 1

23. Определите вектор, равный сумме векторов $\overrightarrow{AB_1} + \overrightarrow{B_1E_1} + \overrightarrow{F_1F}$.

1)
$$\overrightarrow{AB_1}$$
 2) $\overrightarrow{AF_1}$ 3) $\overrightarrow{BB_1}$ 4) \overrightarrow{AE} 5) \overrightarrow{BC}

24. Определите угол между прямой AD_1 и плоскостью ABCDEF.

25. Определите угол между векторами \overrightarrow{EB} и \overrightarrow{EA} .

26. Среди натуральных чисел от 32 до 42 включительно выберите те числа, которые имеют больше 5 делителей (кроме 1 и самого числа).

27. Корнями уравнения $x^4 + 6x^2 - 7 = 0$ являются?

28. Какому промежутку принадлежит отношение $\frac{x}{y}$, где (x; y) — решение системы уравнений:

$$\begin{cases} \sqrt{2x+3} + 3\sqrt{y+3} = 7, \\ 5\sqrt{2x+3} - 2\sqrt{y+3} = 1. \\ 1)(-3;3) & 2)(4;7) & 3)(2;7) & 4)(0;3) & 5)[-3;5] & 6)[-1;1] & 7)[2;5] & 8)[3;5] \end{cases}$$

29. Смешали 50% и 70% растворы кислоты и получили 65% раствор. В каких пропорциях их смешали?

30. Укажите все решения неравенства $\sin x \geqslant \frac{\sqrt{3}}{2}$ на интервале $(0; 5\pi)$.

1)
$$\left[\frac{7\pi}{3}; \frac{8\pi}{3}\right]$$
 2) $\left[\frac{13\pi}{3}; \frac{14\pi}{3}\right]$ 3) $\left[\frac{\pi}{6}; \frac{2\pi}{6}\right]$ 4) $\left[\frac{\pi}{3}; \frac{2\pi}{6}\right]$ 5) $\left[\frac{7\pi}{6}; \frac{8\pi}{6}\right]$ 6) $\left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$ 7) $\left[\frac{13\pi}{6}; \frac{14\pi}{6}\right]$ 8) $\left[\frac{\pi}{6}; \frac{2\pi}{3}\right]$

31. Дана система уравнений

$$\begin{cases} 2^{x} \cdot 4^{y} = 32, \\ \log_{3}(x - y) = \log_{3} 2, \end{cases}$$

где (x; y) — решение данной системы. Сумма (x + y) принадлежит промежутку?

- 1) (5; 12) 2) (5; 7) 3) (0; 10) 4) $(-\infty; 2)$ 5) (-1; 6) 6) (0; 8) 7) (10; 24) 8) (-8; 4)
- **32.** Найдите производную функции: $y = \frac{2x+1}{x^2}$.

1)
$$\frac{-(2x+1)}{x^4}$$
 2) $\frac{2(x^2+1)}{x^4}$ 3) $\frac{-2(x+2)}{x^4}$ 4) $\frac{-(2x+1)}{x^4}$ 5) $\frac{-2(x^3)+1}{x^4}$ 6) $\frac{-2x+1}{x^2}$ 7) $\frac{-(2x+1)}{x^3}$ 8) $\frac{-2x(x^2+1)}{x^3}$

33. Даны векторы $\vec{a}\{4;3\}$, $\vec{b}\{8;-10\}$, $\vec{c}\left\{-4;\frac{23}{3}\right\}$. Разложите вектор \vec{c} по векторам \vec{a} и \vec{b} .

1)
$$\vec{c} = \frac{1}{3}\vec{a} - \frac{2}{3}\vec{b}$$
 2) $\vec{c} = \frac{4}{3}\vec{a} - \frac{\vec{t}}{3}\vec{b}$ 3) $\vec{c} = -\frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$ 4) $\vec{c} = \frac{2}{3}\vec{a} - \frac{2}{3}\vec{b}$ 5) $\vec{c} = \frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$ 6) $\vec{c} = \frac{1}{3}\vec{a} - \frac{1}{3}\vec{b}$ 7) $\vec{c} = -\frac{1}{3}\vec{a} - \frac{1}{3}\vec{b}$ 8) $\vec{c} = \frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}$

34. Укажите промежутки, в которых лежат экстремумы функции: $y = \lg(1 - x^2)$.

1)
$$[-8;-3]$$
 2) $(-\infty;-2]$ 3) $(-3;0)$ 4) $[1;+\infty)$ 5) $(1;6]$ 6) $(-8;8)$ 7) $(0;9)$ 8) $[-1;1]$

35. В прямой правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ имеем $B_1D=8\sqrt{3}$ и $\angle B_1DB=45^\circ$. Найдите площадь боковой поверхности и площадь полной поверхности данной призмы.

1)
$$768\sqrt{3}$$
 2) $228\sqrt{3}$ 3) $288\sqrt{3}$ 4) $384\sqrt{6}$ 5) $288\sqrt{2}$ 6) $192\sqrt{3}$ 7) $576\sqrt{6}$ 8) $384\sqrt{2}$