Вариант № 35810

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 8171
i

Вы­чис­ли­те: 6 ко­рень из 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 48 конец ар­гу­мен­та .



2

3
Тип 3 № 6930
i

Най­ди­те зна­че­ние вы­ра­же­ния: 14 синус 135 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 135 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .



4
Тип 4 № 8227
i

Опре­де­ли­те сте­пень мно­го­чле­на:  7x в сте­пе­ни 4 y в сте­пе­ни 5 плюс 3y в сте­пе­ни 6 минус 5xy в сте­пе­ни 7 минус 2.



5
Тип 5 № 3206
i

Сумма кор­ней квад­рат­но­го урав­не­ния  минус 3 x в квад­ра­те плюс 5 x плюс 8=0 равна



6
Тип 6 № 6940
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний xy=12,x левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка =6. конец си­сте­мы .

Если (x0; y0) — ре­ше­ние этой си­сте­мы, то x0 + y0 = 


7
Тип 7 № 4168
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 4x в кубе плюс x плюс 5, зна­ме­на­тель: 3x конец дроби dx.



8
Тип 8 № 4105
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .



9
Тип 9 № 2059
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка боль­ше 0,x в квад­ра­те минус 6x плюс 8 боль­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 8233
i

Ре­ши­те урав­не­ние:  синус 2x умно­жить на ко­си­нус 2x = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 7885
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции в точке x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка минус 6x плюс 7x в квад­ра­те в точке x  =  1.



12
Тип 12 № 2121
i

Oпре­де­ли­те длину про­ме­жут­ка, со­от­вет­ству­ю­ще­го ре­ше­нию не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x в кубе минус 64 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в кубе плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: минус 1 минус x в квад­ра­те конец дроби боль­ше или равно 0.



13
Тип 13 № 2404
i

Ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 12 равна



14
Тип 14 № 4131
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 3, x левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 2092
i

Пусть ABCD — квад­рат, BM \perp левая круг­лая скоб­ка ABC пра­вая круг­лая скоб­ка . Най­ди­те длину от­рез­ка DM, если AB = 2 ко­рень из 3  см, а BM = 5 см.



16
Тип 16 № 8124
i

Ре­ши­те дроб­но-ир­ра­ци­о­наль­ное урав­не­ние 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та конец дроби =1.



17
Тип 17 № 3654
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 6 плюс 2x боль­ше или равно x минус 2,4x минус 5 мень­ше или равно 7. конец си­сте­мы .



18
Тип 18 № 4161
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те ,y=x плюс 2, минус 3 мень­ше или равно x мень­ше или равно 2.



19
Тип 19 № 3314
i

Пря­мо­уголь­ник ABCD впи­сан в окруж­ность. Дуга BC равна 40°. Мень­ший угол между диа­го­на­ля­ми пря­мо­уголь­ни­ка равен?



20
Тип 20 № 3851
i

Най­ди­те зна­ме­на­тель гео­мет­ри­че­ской про­грес­сии (bn), если b_19 минус b_17=1800, а b_18 минус b_16=600.



21
Тип 21 № 7936
i

На ри­сун­ке изоб­ра­жен ромб ABCD. Най­ди­те длины век­то­ров: \overrightarrowAB плюс \overrightarrowAD, \overrightarrowAB минус \overrightarrowAD, \overrightarrowAB минус \overrightarrowAC, если DB  =  10, AC  =  24.



22
Тип 22 № 3749
i

Упро­сти­те:  дробь: чис­ли­тель: синус 3 альфа , зна­ме­на­тель: синус альфа конец дроби минус дробь: чис­ли­тель: ко­си­нус 3 альфа , зна­ме­на­тель: ко­си­нус альфа конец дроби .



23

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...



24
Тип 24 № 7745
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство  синус x боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



25
Тип 25 № 8019
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 минус 2x минус x в квад­ра­те ,x_0=4.



26
Тип 26 № 8249
i
Развернуть

Hай­ди­те пло­щадь ос­но­ва­ния ко­ну­са (π  ≈  3).



27
Тип 27 № 8250
i
Развернуть

Hай­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са (π  ≈  3).



28
Тип 28 № 8251
i
Развернуть

Hа сколь­ко уве­ли­чит­ся бо­ко­вая по­верх­ность кол­па­ка, если вы­со­ту и ра­ди­ус ос­но­ва­ния уве­ли­чить на 3 см?



29
Тип 29 № 3224
i
Развернуть

Bо сколь­ко обо­шел­ся ре­монт пола, если за­сте­ли­ли ла­ми­нат и на­кле­и­ли плин­тус с уче­том двери с про­емом в 1 м?



30
Тип 30 № 8160
i
Развернуть

Если ста­кан и кол­пак имеют оди­на­ко­вые объ­е­мы, то сколь­ко бы по­ме­сти­лось воды в ста­кан, если π ≈ 3?



31
Тип 31 № 7728
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 4x минус 5 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−5; 1}

3) {−1; 5}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка


Ответ:

32
Тип 32 № 8255
i

Дана рав­но­бо­кая тра­пе­ция, опи­сан­ная около окруж­но­сти с ра­ди­у­сом 6. Бо­ко­вая сто­ро­на тра­пе­ции равна 13. Уста­но­ви­те со­от­вет­ствие между зна­че­ни­я­ми сред­ней линии, вы­со­ты тра­пе­ции и про­ме­жут­ка­ми, ко­то­рым они при­над­ле­жат.

A)  сред­няя линия тра­пе­ции

Б)  вы­со­та тра­пе­ции

1)  [7; 12]

2)  [6; 10]

3)  (14; 16]

4)  (12; 18)


Ответ:

33
Тип 33 № 7762
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние этих чисел равно 12.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [4; 5]

2) (1; 3]

3) (5; 6]

4) (0; 2)


Ответ:

34
Тип 34 № 7768
i

Даны урав­не­ния x в квад­ра­те минус 5x плюс 6 = 0 и 2x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 2, 3, 4

2) 0, 2, 3

3) −1, 4, 6

4) −1, 0, 1


Ответ:

35
Тип 35 № 8258
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b3  =  10 и b6  =  80. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A)  S5

Б)  19 · b1

1)  67,5

2)  57,5

3)  47,5

4)  77,5


Ответ:

36

Вы­бе­ри­те все про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния 4 левая круг­лая скоб­ка 1,5x плюс 1 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 2,1 минус 3x пра­вая круг­лая скоб­ка минус 0,9 при x  =  1.



37
Тип 37 № 8260
i

Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния:  синус 30 гра­ду­сов минус 3 тан­генс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .



38
Тип 38 № 8086
i

Три по­ло­жи­тель­ных числа, взя­тые в опре­де­лен­ном по­ряд­ке, об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. Если сред­нее из чисел умень­шить в 3 раза, то в том же по­ряд­ке по­лу­чит­ся убы­ва­ю­щая гео­мет­ри­че­ская про­грес­сия. Найти ее зна­ме­на­тель.



39
Тип 39 № 8262
i

Если пара чисел  левая круг­лая скоб­ка x_0; y_0 пра­вая круг­лая скоб­ка ре­ше­ние си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка y минус x пра­вая круг­лая скоб­ка = 1, 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни y = 16, конец си­сте­мы .

то зна­че­ние вы­ра­же­ния  3x_0 плюс y_0 в квад­ра­те равно



40
Тип 40 № 3550
i

Точка A — центр шара. По дан­ным ри­сун­ка най­ди­те пло­щадь сфе­ри­че­ской части мень­ше­го ша­ро­во­го сег­мен­та.


Завершить работу, свериться с ответами, увидеть решения.