Вариант № 35807

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7854
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .



2
Тип 2 № 8192
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2 левая круг­лая скоб­ка x в квад­ра­те минус y пра­вая круг­лая скоб­ка , зна­ме­на­тель: x минус 6 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x минус y, зна­ме­на­тель: 6 минус x конец дроби при x  =  −1, y  =  5.



3
Тип 3 № 6925
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 18 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 72 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 8 конец дроби .



4
Тип 4 № 8134
i

Опре­де­ли­те сте­пень мно­го­чле­на: 2x в квад­ра­те y в сте­пе­ни 7 минус 4x в сте­пе­ни 7 плюс 2xy минус 18.



5
Тип 5 № 2467
i

Из дан­ных пар чисел ука­жи­те ту, ко­то­рая яв­ля­ет­ся ре­ше­ни­ем урав­не­ния 6x минус 5y плюс 12 = 0.



6
Тип 6 № 6938
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2y=5x,x плюс y=14. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; у0) ука­жи­те про­из­ве­де­ние x0 · y0.



7
Тип 7 № 4173
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 2x в кубе минус x плюс 3, зна­ме­на­тель: x в квад­ра­те минус 1 конец дроби dx.



8
Тип 8 № 3360
i

Усе­чен­ный конус имеет вы­со­ту 12 см, а ра­ди­у­сы его верх­не­го и ниж­не­го ос­но­ва­ния равны 4 см и 20 см. Най­ди­те об­ра­зу­ю­щую усе­чен­но­го ко­ну­са.



9
Тип 9 № 1993
i

Най­ди­те сумму целых ре­ше­ний си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний ко­си­нус Пи умно­жить на x в квад­ра­те плюс 2x плюс 3 боль­ше или равно 0,x минус 2 мень­ше 0 конец си­сте­мы .



10
Тип 10 № 6947
i

Какое из при­ве­ден­ных урав­не­ний не имеет кор­ней?



11
Тип 11 № 4208
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус 5e в сте­пе­ни левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;4 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3212
i

Pеше­ни­ем не­ра­вен­ства x в квад­ра­те плюс 2x минус 3 мень­ше или равно 0 яв­ля­ет­ся чис­ло­вой про­ме­жу­ток.



13
Тип 13 № 3204
i

Bыра­зи­те в ра­ди­а­нах ве­ли­чи­ну внут­рен­не­го угла пра­виль­но­го тре­уголь­ни­ка.



14
Тип 14 № 4136
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 2, дробь: чис­ли­тель: 5x минус 2, зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби dx.



15
Тип 15 № 7919
i

Сумма длин всех ребер па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 равна 180 см. Опре­де­ли­те длину ребер AB, BC и AA1, если AB:BC:AA_1=2:3:4.



16
Тип 16 № 6964
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 6 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 108=2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .



17
Тип 17 № 3378
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус y пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби , ло­га­рифм по ос­но­ва­нию 5 10x минус ло­га­рифм по ос­но­ва­нию 5 y=1. конец си­сте­мы .



18
Тип 18 № 8188
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ком функ­ции y = x в квад­ра­те минус 8x плюс 16 и гра­фи­ком ее про­из­вод­ной.



19
Тип 19 № 8242
i

Oсно­ва­ния рав­но­бед­рен­ной тра­пе­ции 20 см и 12 см, а ост­рый угол равен 45°. Най­ди­те пло­щадь тра­пе­ции.



20
Тип 20 № 3456
i

Опре­де­ли­те, какая из пред­ло­жен­ных по­сле­до­ва­тель­но­стей не яв­ля­ет­ся гео­мет­ри­че­ской про­грес­си­ей.



21
Тип 21 № 7959
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \veca, если \veca=4\vecp плюс \veci,\vecp= левая круг­лая скоб­ка 5; минус 2 пра­вая круг­лая скоб­ка ,\veci= левая круг­лая скоб­ка минус 7;3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 8048
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4, при x мень­ше 2.



23
Тип 23 № 8008
i

Ре­ши­те урав­не­ние \log _1 плюс x левая круг­лая скоб­ка 2x в кубе плюс 2x в квад­ра­те минус 3x плюс 1 пра­вая круг­лая скоб­ка =3.



24
Тип 24 № 8247
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус x конец ар­гу­мен­та мень­ше 0.



25
Тип 25 № 8155
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 6 в точке x0  =  4.



26
Тип 26 № 2136
i
Развернуть

Най­ди­те пе­ри­метр ос­но­ва­ния дач­но­го до­ми­ка.



27
Тип 27 № 3467
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не ком­плект «чашка+блюд­це»?



28
Тип 28 № 8158
i
Развернуть

На сколь­ко умень­шит­ся бо­ко­вая по­верх­ность кол­па­ка, если вы­со­ту умень­шить на 9 см, а ра­ди­ус ос­но­ва­ния уве­ли­чить на 1 см?



29
Тип 29 № 3469
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может ку­пить в ма­га­зи­не ком­плект «2 чашки+блю­ю­це+3 ложки»?



30
Тип 30 № 2070
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в общем ва­го­не.



31
Тип 31 № 7708
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 0)

2)  {−1; 1}

3)  {−2; 2}

4)  (0; −1)


Ответ:

32
Тип 32 № 8162
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 12. Бо­ко­вая сто­ро­ны тра­пе­ции равна 25. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 20

2) 25

3) 21

4) 24


Ответ:

33
Тип 33 № 7767
i

Най­ди­те два числа x и y, если из­вест­но, что сумма чисел x и y равна 1, а раз­ность чисел x3 и 2y равна 10.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [4; 5]

2) [3; 4)

3) [2; 3]

4) (−2; 0)


Ответ:

34
Тип 34 № 7773
i

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = 27 умно­жить на 9 в сте­пе­ни x и  дробь: чис­ли­тель: x в квад­ра­те минус 7x плюс 10, зна­ме­на­тель: x минус 5 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 3, 1, 7

2) 2, 5, 0

3) 0, 1, 4

4) 3, −1, 2


Ответ:

35
Тип 35 № 7808
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=2,6n минус 7. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a7

Б) a_4 минус a_1

1) 5,2

2) 11,2

3) 7,8

4) 10,4


Ответ:

36
Тип 36 № 2491
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 353 в квад­ра­те минус 272 в квад­ра­те конец ар­гу­мен­та крат­но чис­лам?



37
Тип 37 № 8167
i

Их пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  ко­си­нус 60 гра­ду­сов плюс \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .



38
Тип 38 № 8071
i

Три числа, сумма ко­то­рых равна 26, об­ра­зу­ют гео­мет­ри­че­скую про­грес­сию. Если при­ба­вить к ним со­от­вет­ствен­но 1, 6, и 3, то по­лу­чат­ся числа, об­ра­зу­ю­щие ариф­ме­ти­че­скую про­грес­сию. Найти эти числа.



39
Тип 39 № 8099
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 2\log _25x плюс \log _5y=1, новая стро­ка минус 6x плюс y=1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x умно­жить на y.



40
Тип 40 № 2185
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.


Завершить работу, свериться с ответами, увидеть решения.