Вариант № 35800

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3208
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).



2
Тип 2 № 7860
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в квад­ра­те плюс 4a, зна­ме­на­тель: a в квад­ра­те плюс 8a плюс 16 конец дроби и най­ди­те его зна­че­ние при a= минус 2.



3
Тип 3 № 3271
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7873
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2a в квад­ра­те плюс 3ab плюс b в квад­ра­те .



5
Тип 5 № 3413
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.



6
Тип 6 № 2013
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4x плюс дробь: чис­ли­тель: 9, зна­ме­на­тель: y конец дроби = 21,17 минус 3x = дробь: чис­ли­тель: 18, зна­ме­на­тель: y конец дроби . конец си­сте­мы .



7
Тип 7 № 4177
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3455
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.



9
Тип 9 № 7895
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 4 конец дроби боль­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби , дробь: чис­ли­тель: 5, зна­ме­на­тель: x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби конец си­сте­мы . равно



10
Тип 10 № 6953
i

Ре­ши­те урав­не­ние:  ко­си­нус левая круг­лая скоб­ка 4x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.



11
Тип 11 № 4194
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2086
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.



13
Тип 13 № 1969
i

Cумма двух сто­рон тре­уголь­ни­ка равна 18 см, а тре­тью сто­ро­ну его бис­сек­три­са делит на от­рез­ки 4 см и 5 см. Наи­мень­шая сто­ро­на тре­уголь­ни­ка равна



14
Тип 14 № 7916
i

Вы­чис­ли­те ин­те­грал  ин­те­грал пре­де­лы: от 0 до \tfrac Пи , 6 левая круг­лая скоб­ка синус 5x ко­си­нус 4x минус ко­си­нус 5x синус 4x пра­вая круг­лая скоб­ка dx



15
Тип 15 № 2720
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.



16
Тип 16 № 8126
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 4x плюс 1 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та =5.



17
Тип 17 № 2239
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка конец дроби боль­ше 0, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 7 пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 6x минус 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .



18
Тип 18 № 4151
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.



19
Тип 19 № 7912
i

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 44 и HD=11. Най­ди­те пло­щадь ромба.



20
Тип 20 № 3816
i

Сумма бес­ко­неч­но убы­ва­ю­щей про­грес­сии равна 32, а сумма ее пер­вых че­ты­рех чле­нов 30. Чему равен пер­вый член дан­ной про­грес­сии, если ее зна­ме­на­тель по­ло­жи­те­лен?



21
Тип 21 № 7989
i

В кубе ABCDA_1B_1C_1D_1 рёбра ко­то­ро­го равны 2, вы­чис­ли­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB плюс \overrightarrowBC и \overrightarrowDD_1 минус \overrightarrowDC.



22
Тип 22 № 3203
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка минус 3 a в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка b в квад­ра­те пра­вая круг­лая скоб­ка в кубе .



23
Тип 23 № 8007
i

Ре­ши­те урав­не­ние \log _x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =0,5.



24
Тип 24 № 7753
i

Ре­ши­те не­ра­вен­ство 3 в сте­пе­ни x мень­ше 27 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка .



25
Тип 25 № 8248
i

На­пи­ши­те урав­не­ние ка­са­тель­ной в гра­фи­ку функ­ции  y = 2x в квад­ра­те минус x плюс 3 в точке  x_0 = 1.



26
Тип 26 № 3396
i
Развернуть

Опре­де­лить объем по­ста­мен­та. Ответ округ­лить до целых.



27
Тип 27 № 3755
i
Развернуть

Пред­при­я­тию тре­бу­ет­ся 3 про­грам­ми­ста. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми их можно вы­брать.



28
Тип 28 № 3468
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не из дан­ных то­ва­ров ком­плект из двух раз­ных пред­ме­тов?



29
Тип 29 № 8159
i
Развернуть

Сколь­ко нужно ленты, чтобы об­вить края кол­па­ка, если π ≈ 3?



30
Тип 30 № 3225
i
Развернуть

Kакова сто­и­мость ре­мон­та стен в ком­на­те, если учесть, что в ком­на­те 2 окна с раз­ме­ра­ми 2 м на 1,5 м и двери вы­со­той 2 м и ши­ри­ной 1 м?



31

Функ­ция за­да­на урав­не­ни­ем y = 5 в сте­пе­ни x минус 5. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

2)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

3) 1

4) 0


Ответ:

32
Тип 32 № 7838
i

Пло­щадь се­че­ния шара, удалённого на 2 от цен­тра шара, равна 5π. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью по­верх­но­сти шара, его ра­ди­у­сом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Пло­щадь по­верх­но­сти шара

Б) Ра­ди­ус шара

1) [3; 10)

2) (110; 116]

3) (60; 80)

4) [120; 124]


Ответ:

33
Тип 33 № 7757
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (15; 20)

2) (7; 11)

3) (20; 25)

4) (2; 5)


Ответ:

34
Тип 34 № 8041
i

Даны урав­не­ния x в квад­ра­те минус 8x= минус 7 и 4 левая круг­лая скоб­ка 2,5 плюс 2x пра­вая круг­лая скоб­ка =2. По пред­став­лен­ным дан­ным уста­но­ви­те со­от­вет­ствие.

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из дан­ных урав­не­ний

Б) Ни одно число не яв­ля­ет­ся кор­нем дан­ных урав­не­ний

1) 1, 7, −1

2) 1, 7

3) 0, −7, 2

4) 0, 1, −1


Ответ:

35
Тип 35 № 7818
i

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: …; 150; x; 6; 1,2; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) x

1) 7,2

2) 30

3) 0,2

4) 1080


Ответ:

36
Тип 36 № 6971
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та 8 пра­вая круг­лая скоб­ка .



37
Тип 37 № 7798
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .



38
Тип 38 № 2112
i

Eсли в ариф­ме­ти­че­ской про­грес­сии a_6 плюс a_9 плюс a_12 плюс a_15 = 20, то S20 равна?



39
Тип 39 № 8112
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.



40
Тип 40 № 3555
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.


Завершить работу, свериться с ответами, увидеть решения.