Вариант № 35322

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3814
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .



2
Тип 2 № 8152
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2x в квад­ра­те минус y, зна­ме­на­тель: x минус 4 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x, зна­ме­на­тель: 4 минус x конец дроби при x  =  5, y  =  10.



3
Тип 3 № 8173
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 50 гра­ду­сов плюс синус в квад­ра­те 25 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 25 гра­ду­сов конец дроби плюс 1.



4
Тип 4 № 7876
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2ab плюс 5a в квад­ра­те плюс 2b плюс 5a.



5
Тип 5 № 8052
i

Ре­ши­те урав­не­ние 2 левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка минус 3= минус 3 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка плюс 2.



6
Тип 6 № 2468
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 81x в квад­ра­те = 99 плюс y в квад­ра­те ,y = 9x минус 3. конец си­сте­мы .



7
Тип 7 № 8137
i

Най­ди­те ин­те­грал:  при­над­ле­жит t дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс 2 конец дроби dx .



8
Тип 8 № 8138
i

Ра­ди­ус ко­ну­са умень­ши­ли в два раза. Во сколь­ко раз умень­шил­ся объем ко­ну­са?



9
Тип 9 № 3852
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний x в квад­ра­те боль­ше или равно 2,25, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1. конец си­сте­мы .



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 4200
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 4;2 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2435
i

Из дан­ных пар чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.



13
Тип 13 № 8236
i

Ис­поль­зуя чер­теж, вы­чис­ли­те пло­щадь тре­уголь­ни­ка ABC.



14
Тип 14 № 4135
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 12 до 15, левая круг­лая скоб­ка 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс x пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 2240
i

Из точки M про­ве­ден пер­пен­ди­ку­ляр MK, рав­ный 6 см к плос­ко­сти квад­ра­та ACPK. На­клон­ная MC об­ра­зу­ет с плос­ко­стью квад­ра­та угол 60°. Най­ди­те сто­ро­ну квад­ра­та.



16
Тип 16 № 8130
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка минус x минус 1 пра­вая круг­лая скоб­ка =1.



17
Тип 17 № 2099
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни x плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 2,2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка мень­ше или равно 64 умно­жить на 2 в сте­пе­ни x . конец си­сте­мы .



18
Тип 18 № 4154
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс x плюс 7,y= минус 3x плюс 3, минус 5 мень­ше или равно x мень­ше или равно 1.



19
Тип 19 № 7911
i

Кар­тин­ка имеет форму пря­мо­уголь­ни­ка со сто­ро­на­ми 24 см и 38 см. Её на­кле­и­ли на бу­ма­гу так, что во­круг кар­тин­ки по­лу­чи­лась окан­тов­ка оди­на­ко­вой ши­ри­ны. Пло­щадь, ко­то­рую за­ни­ма­ет кар­тин­ка с окан­тов­кой, равна 1976 см2. Ка­ко­ва ши­ри­на окан­тов­ки?



20
Тип 20 № 2161
i

В ариф­ме­ти­че­ской про­грес­сии сумма a_4 плюс a_6 = 20. Най­ди­те пятый член дан­ной про­грес­сии.



21
Тип 21 № 7974
i

Най­ди­те угол между век­то­ра­ми \veca и \vecb, если:

а)  \veca= левая круг­лая скоб­ка 2;3 пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка 2;4 пра­вая круг­лая скоб­ка ; б) \veca= левая круг­лая скоб­ка 0;1 пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка 2;0 пра­вая круг­лая скоб­ка ;

в)  \veca= левая круг­лая скоб­ка 1; ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ;1 пра­вая круг­лая скоб­ка ; г) \veca= левая круг­лая скоб­ка 6;4 пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка 2; минус 3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 3317
i

Со­кра­ти­те дробь:  дробь: чис­ли­тель: a в квад­ра­те плюс b в квад­ра­те плюс 2ab минус 9, зна­ме­на­тель: a в квад­ра­те плюс ab минус 3a конец дроби .



23
Тип 23 № 8028
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те = ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 4x минус 15 пра­вая круг­лая скоб­ка .



24
Тип 24 № 8083
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 4 пра­вая круг­лая скоб­ка боль­ше или равно минус 1.



25
Тип 25 № 8025
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=4.



26
Тип 26 № 8033
i
Развернуть

Опре­де­ли­те объем ре­зер­ву­а­ра A.



27
Тип 27 № 3432
i
Развернуть

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок попал в жел­тую часть ми­ше­ни.



28
Тип 28 № 3433
i
Развернуть

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок по­ра­зил жел­тую часть ми­ше­ни, а вто­рой стре­лок не попал в жел­тую часть ми­ше­ни.



29
Тип 29 № 3434
i
Развернуть

Bеро­ят­ность того, что жел­тая часть ми­ше­ни будет по­ра­же­на пер­вым или вто­рым стрел­ком, если они по ми­ше­ни про­из­ве­ли по од­но­му вы­стре­лу равна



30
Тип 30 № 3435
i
Развернуть

Пер­вый стре­лок про­из­вел 5 вы­стре­лов по ми­ше­ни. С какой ве­ро­ят­но­стью он ровно 3 раза по­ра­зил жел­тую часть ми­ше­ни?



31
Тип 31 № 8254
i

Квад­ра­тич­ная функ­ция за­да­на в виде  y = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствия между ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы, ну­ля­ми функ­ции и их зна­че­ни­я­ми.

A)  нули функ­ции

Б)  ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  левая круг­лая скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка

2)  левая фи­гур­ная скоб­ка 1; 3 пра­вая фи­гур­ная скоб­ка

3)  левая круг­лая скоб­ка 2; минус 1 пра­вая круг­лая скоб­ка

4)  левая фи­гур­ная скоб­ка 1; 2 пра­вая фи­гур­ная скоб­ка


Ответ:

32
Тип 32 № 7825
i

Ра­ди­ус опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка окруж­но­сти равен 2. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 3 ко­рень из 3

3) 6

4) 2 ко­рень из 3


Ответ:

33
Тип 33 № 7732
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни 4 . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x3, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x3

Б) Ко­эф­фи­ци­ент при x

1) (−8; 1)

2) (−10; −7)

3) (−40; −30)

4) (10; 21)


Ответ:

34
Тип 34 № 7788
i

Даны урав­не­ния  левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка =3 и  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4x минус 1 конец ар­гу­мен­та = 2 ко­рень из: на­ча­ло ар­гу­мен­та: минус x конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 4, −1

2) −1, 0, 4

3) 1, 4, 2

4) 1, −2, 2


Ответ:

35
Тип 35 № 7805
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2 минус a_5=7,8 и a_3= минус 1,8. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) a1

1) –3,9

2) –2,6

3) 6

4) 3,4


Ответ:

36
Тип 36 № 2036
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 125 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та конец дроби .



37
Тип 37 № 7801
i

Зна­че­ние вы­ра­же­ния 6 синус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби плюс 6 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби равно



38
Тип 38 № 8168
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 12. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 2, 5 и 20, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.



39
Тип 39 № 8110
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2x минус 3y конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3x минус 2y конец дроби = дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби , новая стро­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2x минус 3y конец дроби минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3x минус 2y конец дроби =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби .



40
Тип 40 № 3235
i

Дан тре­уголь­ник АВС, у ко­то­ро­го АВ = 15 м, ВС = 18 м и АС = 12 м. Най­ди­те длину бис­сек­три­сы АD.


Завершить работу, свериться с ответами, увидеть решения.