Вариант № 35316

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3208
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).



2
Тип 2 № 7859
i

Най­ди­те зна­че­ние вы­ра­же­ния 28ab плюс левая круг­лая скоб­ка 2a минус 7b пра­вая круг­лая скоб­ка в квад­ра­те при a= ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та ,b= ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та .



3
Тип 3 № 1938
i

Вы­чис­ли­те  арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби плюс арк­тан­генс левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из 3 конец дроби пра­вая круг­лая скоб­ка



4
Тип 4 № 7872
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на a в квад­ра­те плюс 4ab плюс 3b в квад­ра­те .



5
Тип 5 № 3770
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния: 4 умно­жить на \abs2x плюс 7 минус 5=31.



6
Тип 6 № 2608
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .



7
Тип 7 № 4177
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 4101
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.



9
Тип 9 № 1973
i

Bычис­ли­те зна­че­ние суммы целых чисел, удо­вле­тво­ря­ю­щих си­сте­ме не­ра­венств:  си­сте­ма вы­ра­же­ний 2x плюс 5 мень­ше 3,x в квад­ра­те минус 5x мень­ше или равно 24. конец си­сте­мы .



10
Тип 10 № 6945
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 3278
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни x .



12
Тип 12 № 2086
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.



13
Тип 13 № 3867
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.



14
Тип 14 № 3389
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.



15
Тип 15 № 3932
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.



16
Тип 16 № 8125
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та , зна­ме­на­тель: x в квад­ра­те конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та конец дроби .



17
Тип 17 № 3667
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x минус 6 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 12 конец ар­гу­мен­та мень­ше x минус 1,2x минус 3 мень­ше 33. конец си­сте­мы .



18
Тип 18 № 7906
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y= левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ,y= минус левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те , минус 2 мень­ше или равно x мень­ше или равно 2.



19
Тип 19 № 7912
i

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 44 и HD=11. Най­ди­те пло­щадь ромба.



20
Тип 20 № 3843
i

Учи­тель дал за­да­ние: из пред­ло­жен­ных по­сле­до­ва­тель­но­стей

а)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ;\ldots

б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби ;\ldots

в) 10 ; 8 ; 6 ; 2 ; \ldots

вы­брать бес­ко­неч­но убы­ва­ю­щую гео­мет­ри­че­скую про­грес­сию и найти сумму всех его чле­нов. Если уче­ник вы­пол­нил за­да­ние верно, то в от­ве­те он по­лу­чил.


21
Тип 21 № 7949
i

Най­ди­те длины сумм и раз­но­стей век­то­ров по дан­ным ри­сун­ка.



22
Тип 22 № 2431
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: x плюс y минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: xy конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из y минус ко­рень из x конец дроби .



23
Тип 23 № 1991
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.



24
Тип 24 № 7740
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше 34.



25
Тип 25 № 8195
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 12 в точке x0  =  5.



26
Тип 26 № 3361
i
Развернуть

Ко­ли­че­ство спо­со­бов вы­па­де­ния чет­но­го числа равна



27
Тип 27 № 2067
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном Купе.



28
Тип 28 № 2033
i
Развернуть

Сколь­ко нужно ис­поль­зо­вать ма­те­ри­а­ла (кро­вель­но­го же­ле­за) для по­кры­тия крыши с уче­том швов и об­ре­зок? (округ­ли­те до целых).  левая круг­лая скоб­ка Пи = 3,14 пра­вая круг­лая скоб­ка



29
Тип 29 № 8159
i
Развернуть

Сколь­ко нужно ленты, чтобы об­вить края кол­па­ка, если π ≈ 3?



30
Тип 30 № 3974
i
Развернуть

Hапи­ши­те фор­му­лу вы­чис­ле­ния общей пло­ща­ди ого­ро­да S (x) вклю­чая до­ро­гу, если в целях рас­ши­ре­ния ого­ро­да все его раз­ме­ры уве­ли­чи­ли на х мет­ров.



31

Функ­ция за­да­на урав­не­ни­ем y = 5 в сте­пе­ни x минус 5. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

2)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

3) 1

4) 0


Ответ:

32

В ци­линдр впи­сан шар, ра­ди­ус ко­то­ро­го равен 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью пол­ной по­верх­но­сти ци­лин­дра, объ­е­мом ци­лин­дра и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь пол­ной по­верх­но­сти ци­лин­дра

Б) Объем ци­лин­дра

1) 324π

2) 432π

3) 216π

4) 288π


Ответ:

33
Тип 33 № 7758
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 5, а от­но­ше­ние раз­но­сти их квад­ра­тов этих чисел к их сумме равно 8.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (9; 12)

2) [4; 6)

3) (1; 2]

4) (7; 9)


Ответ:

34
Тип 34 № 7790
i

Даны урав­не­ния  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x минус 6 конец дроби = 2 и x в квад­ра­те минус x минус 6=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −2, 3, 8

2) −2, 8, 1

3) −3, 5, 1

4) 3, −1, 8


Ответ:

35
Тип 35 № 7817
i

Вы­пи­са­ны не­сколь­ко пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии: 17, 68, 272, … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b4

Б) S4

1) 1088

2) 816

3) 1225

4) 1445


Ответ:

36
Тип 36 № 3231
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .



37
Тип 37 № 7797
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:



38
Тип 38 № 3948
i

Зна­че­ние суммы пер­вых трех чле­нов воз­рас­та­ю­щей ариф­ме­ти­че­ской про­грес­сии с по­ло­жи­тель­ны­ми чле­на­ми равно 15, а зна­че­ние суммы их квад­ра­тов равно 93. Най­ди­те пятый член этой про­грес­сии.



39
Тип 39 № 8109
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.



40
Тип 40 № 3555
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.


Завершить работу, свериться с ответами, увидеть решения.